Stroke: Neurorehabilitation and Secondary Stroke Prevention

Prof. Mayowa Ojo OWOLABI
MBBS, MSc(distinction), DrM, MD,FMCP, FWACP,FAAN,FAHA, FANA, FRCP, FAS, FAMedS

Pioneering Regional Vice President (Sub-Saharan Africa) WFNR
Pioneering Chair, H3Africa CHAIR consortium
Pioneer, GACD COUNCIL initiative
Lead Co-Chair WHO-WSO-Lancet Commission on Stroke
Member, Board of Directors, World Stroke Organization
Member, Board of Directors, World Hypertension League
Member, Presidium, World Federation for NeuroRehabilitation
Pioneer Director, Center for Genomic and Precision Medicine, University of Ibadan
mayowaowolabi@yahoo.com +2348020775595
www.blossom.org.ng

14th Regional Teaching Course in sub-Saharan Africa  EAN-AFAN, Dar es Salaam, 28-31 October, 2023
Neurological disorders are the leading cause of Disability Adjusted Life Years (DALYs) and the second leading cause of global deaths.

In 2019, 9 million people died due to neurological disorders.

The NCD Countdown 2030 stated that the risk of dying from neurological conditions between birth and 80 years of age increased for more than half of countries, making them the fastest-growing cause of death among NCDs.

Stroke costs almost US $900 billion per annum globally, projected to cost US $2.3 trillion in 2050.
The neurology revolution

As highlighted in your Editorial,1 WHO’s Intersectoral Global Action Plan on Epilepsy and Other Neurological Disorders 2022–2031 (IGAP)2 marks a turning point and will represent a revolution in neurology. The non-communicable disease (NCD) Countdown 2030 reported that the risk of dying from neurological disorders between birth and 80 years of age has increased more than half of countries, making these disorders the fastest-growing cause of death among NCDs.3 By 2040, neurological diseases are projected to contribute to an increase of approximately 50% in disability-adjusted-life-years (DALYs).4

For several neurological disorders (eg, dementia, multiple sclerosis, and migraine) women can be disproportionately affected, both as patients and in caregiving roles. The burden of neurological diseases in childhood is also important to consider because of the negative effects of these disorders on the developing brain. Furthermore, the burden of many neurological disorders is unfortunately skewed towards low-income and middle-income countries (LMICs).5 WHO reported in its Neurology Atlas a global dearth of neurologists, which is more pronounced in LMICs than in high-income countries. The report showed that in LMICs there were only three adult neurologists per 10 million people, compared with 475 adult neurologists per 10 million people in high-income countries. In many LMICs, there is a shortage of health care professionals, including neurologists, leading to a lack of access to quality care for those affected by neurological disorders.6

Attention, confusing policy makers, losing momentum, and wasting scarce resources. However, a strong argument exists to unite various stakeholders in working to advance common goals. The IGAP unifies such an effort with its aim to reduce disability due to neurological disorders, in line with the biopsychosocial approach of WHO’s International Classification of Functioning, Disability and Health (ICF), for which functioning and disability are considered the result of interactions between neurological conditions and contextual factors across the life course.

Neurological health, particularly brain health, holds the keys to attainment of the third UN Sustainable Development Goal (SDG), and indeed of all SDGs. The advent of the neurological revolution, leveraging WHO’s IGAP, is propelling neurology to the forefront of the global health and developmental agenda by harmonising global neurology activities and advocacy efforts into a united powerful voice. Each country will have to identify the key neurological disorders to target to reduce the neurological burden by 2030. Neurology champions are needed in all countries to harness global resources and facilitate interdisciplinary collaboration.


[396x21]Owolabi MO, University of Ibadan

[0x0]3
WHO’s integrated approach to neurological conditions

1. Neurological diseases

2. Integration continuum across the health and social care framework

3. Mental health
   - NCDs
   - Social determinants
   - Communicable diseases

4. Across the life course

5. Health and social care system

UHC / PHC

Promotion/prevention
Diagnosis
Treatment
Rehabilitation
Global synergistic actions to improve brain health for human development

Fig. 1 | Interrelationships among the domains of health and wellbeing.
# Ranking of age-standardized DALY rates for neurological disorders by 21 GBD regions, for both sexes, 2019

<table>
<thead>
<tr>
<th>Condition</th>
<th>Global</th>
<th>Andean Latin America</th>
<th>Australia</th>
<th>Caribbean</th>
<th>Central Asia</th>
<th>Central Sub-Saharan Africa</th>
<th>East Asia</th>
<th>Eastern Europe</th>
<th>East Asia (Pacific)</th>
<th>High-Income Africa</th>
<th>High-Income Asia Pacific</th>
<th>North Africa and Middle East</th>
<th>South Asia</th>
<th>Southeast Asia</th>
<th>Southwestern Latin America</th>
<th>Tropical Latin America</th>
<th>Western Sub-Saharan Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke</td>
<td>1</td>
</tr>
<tr>
<td>Neonatal encephalopathy due to birth asphyxia and trauma</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Migraine</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Alzheimer's disease and other dementias</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Meningitis</td>
<td>5</td>
<td>5</td>
<td>14</td>
<td>16</td>
<td>5</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td>10</td>
<td>16</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Idiopathic epilepsy</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Neural tube defects</td>
<td>7</td>
<td>12</td>
<td>14</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Brain and central nervous system cancer</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>11</td>
<td>9</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Head Injuries</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Parkinson's disease</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>11</td>
<td>7</td>
<td>13</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Spinal Injuries</td>
<td>11</td>
<td>13</td>
<td>8</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Encephalitis</td>
<td>12</td>
<td>9</td>
<td>17</td>
<td>14</td>
<td>8</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>16</td>
<td>15</td>
<td>17</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Tension-type headache</td>
<td>13</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>14</td>
<td>8</td>
<td>9</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Other neurological disorders</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Tetanus</td>
<td>15</td>
<td>18</td>
<td>18</td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>17</td>
<td>17</td>
<td>14</td>
<td>15</td>
<td>18</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>Down syndrome</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Multiple sclerosis</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>17</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Motor neuron disease</td>
<td>18</td>
<td>16</td>
<td>12</td>
<td>17</td>
<td>17</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>13</td>
<td>13</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>15</td>
</tr>
</tbody>
</table>
Distribution of global DALYs for 18 neurological disorders by age, 2019.
Stroke: a global response is needed
Walter Johnson, a Oyere Onuma, b Mayowa Owolabi, c & Sonal Sachdev d

Worldwide, cerebrovascular accidents (stroke) are the second leading cause of death and the third leading cause of disability. 1 Stroke, the sudden death of some brain cells due to lack of oxygen when the blood flow to the brain is lost by blockage or rupture of an artery to the brain, is also a leading cause of dementia and depression. 2 Globally, 70% of strokes and 87% of both stroke-related deaths and disability-adjusted life years occur in low-income countries) die within three years of diagnosis. 2 Current guidelines for the management of acute stroke recommend a course of treatment based on the diagnosis of ischaemic stroke (versus haemorrhagic stroke) made using computed tomography (CT) scanners. In low-resource settings, CT scanners are either unavailable or unaffordable, forcing clinicians to make difficult clinical decisions, such as whether to anticoagulate.

a Department of Service Delivery and Safety, World Health Organization, avenue Appia 20, 1211 Geneva 27, Switzerland.
b Management of Noncommunicable Diseases, Disability, Violence and Injury Prevention Department, World Health Organization, Geneva, Switzerland.
c Department of Medicine, University of Ibadan, Ibadan, Nigeria.
d Correspondence to Walter Johnson (email: johnsonw@who.int).

Effectively Combating Stroke in Low- and Middle-Income Countries: Placing Proof in Pragmatism—The Lancet Neurology Commission

Mayowa Owolabi, Walter Johnson, Taskeen Khan, Valery Feigin, for Operations Committee of the Lancet Neurology on Stroke

Introduction

Stroke remains the second leading cause of death and disability and one of the leading causes of depression and dementia

Pragmatic solutions to reduce the global burden of stroke: a World Stroke Organization–Lancet Neurology Commission

Taming the Burgeoning Stroke Epidemic in Africa: Stroke Quadrangle to the Rescue

MO Owolabi

ABSTRACT

Objectives: Globally, stroke is the second leading cause of death. This is a systematic review of the existing literature to examine the burden and profile of stroke in the World Health Organization (WHO) African region and proffer coordinated and responsive means of tackling the epidemic.

Methods: A systematic review of the literature was conducted according to the Centre for Reviews and Dissemination Guidelines using PubMed, African Journals On-Line and Google Scholar databases. Over 1300 articles were obtained. All abstracts were screened, and every article that might have contained relevant information was read in full. Their heterogeneity made meta-analysis impossible. So a critical assessment of the data with a narrative review was conducted.

Results: Stroke has an annual incidence rate of up to 316 per 100,000, a prevalence rate of up to 315 per 100,000 and a three-year fatality of up to 84% in Africa. In 2002, model-based estimated age-adjusted stroke mortality rates ranged between 168 and 179 per 100,000 population for countries in the African region. There is severe scarcity of facilities and human resources for prevention, investigations, acute care and rehabilitation of stroke patients in Africa.

Conclusions: Africa bears a heavy burden of stroke. This author proposes a stroke quadrangle comprising a converted network of four pillars: demographic surveillance and stroke research network, integrated community-based primary and secondary prevention programmes, easily accessible and
Situational & Gap Analysis, Projections

Systematic review of Stroke Burden, Services, Costs; Resources; Gaps; Trends & Future Projections (2050) across the globe (WHO, GBD, other data sources)

Selection of evidence-based Interventions

Prioritization of recommendations according to best quality stroke guidelines (GRADE) and emerging evidence for surveillance, prevention strategies, acute care services, and rehabilitation services

Considerations for Implementation of evidence

PLEASE

Political, legal, ethical, anthropological and socio-economic contextualization according to the behavioural wheel implementation science theory

Pragmatic Solutions, Key Performance Indicators, Future Directions

Synthesis of all the evidence and resources, and identification of gaps requiring further research, in synergy with those of other global initiatives to tackle non-communicable diseases by 2030 and beyond
Figure 1: The four pillars of the quadrangle to tackle the burden of stroke: surveillance, prevention, acute care, and rehabilitation
The five R’s:

The key purposes of rehabilitation can be summarized as the "five Rs":

- **Realisation of potential**: ensuring that the duration of contact with therapy staff has been sufficiently long to observe a plateau phase in recovery.

- **Re-enablement**: focusing on promoting independence in daily living skills such as walking and dressing.

- **Resettlement**: helping the person to leave hospital feeling safe, well supported, and confident.

- **Role fulfilment**: helping the person to re-establish their status and personal autonomy.

- **Readjustment**: helping the person to adapt to and accept a new lifestyle.
Stroke Rehabilitation

• Add years to life
• Add life to years (improve functioning and quality of life)
• Add meaning to life
• Towards Self-realization. Self-actualization

+ Years + Life
+ Meaning
Health-Related Quality of Life in Stroke Survivors at the University Hospital of the West Indies

Jodian A. Pinkney1,2,3, Francene Gayle1,2,4, Kathryn Mitchell-Pearson1,2, Jasmeth Mullings1,2

Abstract
Background: Stroke remains a major contributor to mortality and morbidity both locally and globally. To date, there has been no study examining the impact of stroke on quality of life (QOL) in the Jamaican population. Our study was the first to look at QOL among Jamaican stroke survivors across the vast spectrum of stroke severity.

Psychometric Properties of the HRQOLISP-40: A Novel, Shortened Multiculturally Valid Holistic Stroke Measure

Mayowa Ojo Owolabi, MBBS, MWACP, FMCP, DM, Cert Epid & Glob Health.1

Clinical Interventions in Aging

Profile and health-related quality of life of Ghanaian stroke survivors

Eric S Donkor1,2 Mayowa O Owolabi3 Patrick O Bampoh1

Background: Stroke is a leading cause of mortality with a major effect on health-related quality of life (HRQoL). There are no previous studies exploring HRQoL among stroke survivors in Ghana, despite the increasing public health significance of the disease in this country. Here we examined the impact of stroke on this population’s HRQoL using the HRQOLISP-40.

Psychometric properties of the German version of the health-related quality of life in stroke patients (HRQOLISP) instrument

Mayowa Ojo Owolabi1,2

1Department of Medicine, University College Hospital, Ibadan
2WFNR-Blossom Center for Neurorehabilitation, Ibadan
Spiritual sphere relatively spared
Panel 8: Key messages for stroke rehabilitation

- There is an urgent need to invest in the creation of multidisciplinary rehabilitation services, and in research to generate innovative low-cost interventions (especially in low-income and middle-income countries), and in training of stroke rehabilitation professionals.
- Assessment tools such as the modified Rankin Scale, the US National Institutes of Health Stroke Scale, and quality-of-life scales should be used to document the type and severity of disability and impairments.
- Dissemination of multidimensional assessment tools, solutions, training videos (including self-management), and advocacy targeting all stakeholders should be implemented for stroke rehabilitation in all regions. Telemedicine and digital channels could be harressed.

Research priorities

- Multidimensional characterisation of the life course after a stroke.
- Investigation of the prevalence and management of risk factors for functional dependence and mortality after stroke at the population level.
- Establishment of the capacity and needs of the health services and workforce for stroke rehabilitation in terms of education, skill and competencies, and availability of required tools and equipment—eg, by using the WHO rehabilitation competency framework.272
- Development of performance indicators to monitor rehabilitation quality.
- Development of tailored rehabilitation protocols for low-income and middle-income countries.
- Assessment and monitoring of country coverage and outcomes of stroke rehabilitation with routine data collection from facilities—eg, by using WHO’s Routine health information systems—rehabilitation toolkit.273
- Validation of the effectiveness of educational tools for stroke rehabilitation, including telerehabilitation, training videos (including self-management tools and programmes), and mobile health (including the role for delivering remote care).
- Investigation of the feasibility, safety, effectiveness, and coverage of home-based rehabilitation (including self-management), and community-based rehabilitation.
- Investments in regenerative medicine, novel medications to modify neuroplasticity, low-cost and accessible robotics, neuromodulation tools, and brain–computer interface approaches.
- Discovery of novel biomarkers for prognostication and quantification of neural repair and recovery.
## Supplementary Table 20. Key Recommendations based on National Stroke Guidelines and WFNIR recommendations to improve stroke rehabilitation services worldwide

### KEY RECOMMENDATIONS

(Criteria: Class I and III and IIA A or B, IIIB recommendations only from best Guidelines reviewed based on COUNCIL Criteria)

<table>
<thead>
<tr>
<th>Source</th>
<th>Level of evidence/ GRADE</th>
<th>Resources required for implementation</th>
<th>Barriers and Facilitators for implementation</th>
<th>Pragmatic solutions and recommendation for contextualization and implementation through WSO implementation ecosystem on Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHA</td>
<td>IC</td>
<td>Rehabilitation personnel e.g., rehabilitation doctor/physician/neurologist; physiotherapist; occupational therapist; speech and language and dysphagia therapist; clinical psychologist; nurse; etc.</td>
<td>Inadequate number of rehabilitation personnel. Task-shifting and task-sharing with caregivers</td>
<td>WSO implementation ecosystem on Stroke commissioners to advocate for the training of rehabilitation personnel who can offer domiciliary services</td>
</tr>
<tr>
<td>ESAP</td>
<td>Weak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td>Nil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>LoE: 5 GoE: very low Soft: 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>ORGANIZATION OF REHABILITATION SERVICE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Organized community-based and coordinated interprofessional rehabilitation care is recommended in the outpatient or home-based settings.

Home-based rehabilitation may be considered as a preferred model for delivering rehabilitation in the community. Where home rehabilitation is unavailable, stroke patients requiring rehabilitation should receive centre-based care.

People with stroke living in care homes should be offered assessment and treatment from community stroke rehabilitation services to identify activities and adaptations that might improve quality of life.

It is recommended that early rehabilitation for hospitalized stroke patients be provided in environments with organized, interprofessional stroke care.

AHA | IA | Multidisciplinary rehabilitation facilities with rehabilitation doctor/physician/neurologist; physiotherapist; occupational therapist; speech and language and dysphagia therapist; clinical psychologist; nurse; etc. | Major barriers to be surmounted include lack of awareness and low demand, absence of/for inadequate number of rehabilitation professionals (need to establish training institutions/program to produce adequate number of professionals); need to adapt evidence-based practice recommendations to regional capacities (need to establish regional protocols / clinical guidelines) | WSO implementation ecosystem on Stroke commissioners to develop, implement and monitor strategic action plan with all stakeholders to ensure availability of stroke rehabilitation services to all eligible stroke patients in their countries and regions. |
| ESAP | | | | |

---

Pragmatic solutions to reduce the global burden of stroke: a World Stroke Organization-Lancet Neurology Commission

Neurorehabilitation Phases, Interphases and Interfaces

- **Neuroplasticity (Bio-physical model)**
- **Adaptive (Psycho-spiritual model)**
Early rehabilitation (first few months) uses techniques that seek to influence the potential for neuroplastic change.

Late rehabilitation encourages adaptive responses and coping strategies based on educational and psychological theory.
The brain's ability to reorganize itself by forming **new neural connections** throughout life. Neuroplasticity allows the neurons in the brain to compensate for injury and disease and to adjust their activities in response to new situations or to changes in their environment.

Brain reorganization takes place by mechanisms such as "**axonal sprouting**" in which undamaged axons grow new nerve endings to reconnect neurons whose links were injured or severed. Undamaged axons can also sprout nerve endings and connect with other undamaged nerve cells, forming new neural pathways to accomplish a needed function.
Self efficacy

• Self-efficacy was introduced by Bandura (1977), as a cornerstone of his Social Learning Theory. It has been defined as ‘people’s beliefs about their capabilities to produce designated levels of performance that exercise influence over events that affect their lives’. Individual in the driver’s seat of his life

• Self-efficacy beliefs can determine how people feel, think, motivate themselves and behave with regards to their health.

• For example, self-efficacy influences motivation, and indeed health behaviours, by determining the goals people set, how much effort they invest in achieving those goals and their resilience when faced with difficulties or failure
Stroke Recovery Cycle

- Improvement of life purpose score (enhancement of sense of purpose in life)
- Restoring and promoting meaning in life after stroke (spiritual sphere including autonomy and self-motivation)

Adherence to therapy and attainment of treatment goals with resultant improvement in functioning and health-related quality of life after stroke

Better emotional wellbeing and drive (increased laughter frequency and reduced negative emotions)

Enhancement of Internal adaptation and development of coping skills

Adapted from Chapter 14. Health care setting for rehabilitation after stroke: Wasti SA, Surya N, Stephan KM, Owolabi M
Physiotherapy

Ability to recover self-care and mobility

Early stroke rehab care /stroke unit

Comprehensive intensive rehab superior to less-intense programs

Practice of motor tasks in the context of functional skills : task-oriented training

Settings: hospital, rehab center, community, domiciliary, tele-rehab
Patients most likely to improve with motor training for the UL are those with some residual function.

Degree of damage of the corticospinal tract predicts final outcome.

SLS and mood disorders are the dominant predictors of QOL (Owolabi, 2008)
Motor Imagery

• The motor imagery group was asked to practise daily imagining moving tokens with their affected arm. The nonmotor imagery group rehearsed visual imagery of previously seen pictures. All patients practised physically moving the tokens.

• MAIN MEASURES: motor function (training task, pegboard and dynamometer), perceived locus of control, attention control and ADL independence.

• RESULTS: Improvement was greater for the motor imagery group on the training task only (average of 14% versus 6%).

• CONCLUSIONS: Motor imagery training without supervision at home may improve performance on the trained task only. Dijkerman HC 2004
Motor imagery

- Based on the available literature in healthy volunteers, robust activation of the nonprimary motor structures, but only weak and inconsistent activation of M1, occurs during motor imagery.
- In patients with stroke, the cortical activation patterns are essentially unexplored as is the underlying mechanism of motor imagery training.
- Provided appropriate methodology is implemented, motor imagery may provide a valuable tool to access the motor network and improve outcome after stroke.
- May help functional reorganisation in hemiplegic stroke patients
Constraint-Induced Movement Therapy (CIMT)

• combines physical and occupational therapy to stimulate the brain into "repairing its circuitry" so that people can regain increased function of their paralyzed limbs—even if the stroke happened years ago.

• The rehabilitation involves using a restraint device to immobilize a patient's still-useful arm so that he or she is forced to use the paralyzed arm to complete familiar, detail-oriented tasks, such as turning pages on a book, throwing a ball, and opening and closing spring-operated clothespins.

• The therapy only works, researchers say, if patients participate for a minimum of six hours a day for at least two weeks. Can be combined with robotics.
FIGURE 8-4  Patient with left hemiparesis receiving constraint-induced movement therapy. Note the mitt on his right hand to prevent the hand’s involvement in this task.

FIGURE 8-3  Longitudinal changes in a two-dimensional motor map obtained by using transcranial magnetic stimulation over the motor cortex of each hemisphere in a patient receiving constraint-induced movement therapy (CIMT) following stroke. The grid size is 1 cm, and motor responses at each scalp position are coded by intensity (relative to the maximal response). Note expansion of the motor map over the affected hemisphere associated with CIMT, which persists at 4 months.

Robotics

• **Physically aid movement**: Robots that physically impact humans must address the major as-yet largely unsolved challenges involving safety, cost, and liability.

• **Hands-off strategy**, focusing instead on employing **human-robot interaction** to achieve the desired therapy goals.

• Human-robot interaction techniques capable of interacting with a post-stroke patient in the home, monitoring patient use of the affected arm, reminding him/her to use the arm, and providing guidance, encouragement, and improvement assessment.
Neuroimplants

• One of the world’s first “bionic” devices to produce functional hand and arm movement through electrical stimulation. In UK to achieve a co-ordinated hand and arm movement.

• Device using radio frequency (RF) electrical stimulation to improve motor recovery and re-learning of arm and hand function following a stroke.

• The research is based on the AMF RF microstimulators that are implanted into a patient’s arm. The pioneering system is designed to provide electrical stimulation to both control and re-educate weak or paralysed muscles to produce functional arm and hand movements.

• Patient fitted with a cuff that sends signals to the microstimulators, and the system was programmed to produce functional patterns of movement.
Occupational therapy

- Occupational therapy - *a treatment that focuses on helping people achieve independence in all areas of their lives*.

- Can provide stroke patients with various needs with positive, fun activities to improve their cognitive, physical, and motor skills and enhance their self-esteem and sense of accomplishment.

- According to the American Occupational Therapy Association (AOTA), in addition to dealing with an individual's physical well-being, occupational therapy practitioners address psychological, social, and environmental factors that may hinder an individual's functioning in different ways.

Ergotherapy

- Self-sufficiency training of casual daily activities, training of smooth *acral mobility* at limbs paresis.

- The training of *kitchen skills* and *workshop skills* belongs to the classical methods used in ergotherapy.
SALT

- Dysphasias, dysarthrias
- Intense therapy more effective
- Voice activated speech recorder
- Artefacts
- Brain Computer Interface Systems
- Speech synthesizers
- Piracetam as adjunct
Culturally responsive Artefacts used to initiate spontaneous speech from patients at the Blossom rehab center
Psychotherapy

- Post-stroke cognitive disorder common
- Mood disorders and depression common
- Depression associated with worse outcome
Cognitive rehabilitation

• **Language & Communication:** Language and communication problems can keep improving for a long time after the injury. Speech therapists can help people with TBIs see which areas they are good at and which areas need more practice. They can also teach *compensations.* The practice and *feedback* that speech therapists give in therapy sessions can lead to better conversation skills in social situations too.

• **Memory:** For memory problems, the researchers found that many of the treatments that are used only help in the short term. For longer-term memory improvement, they found that *real-life compensations worked best.* This included things like *computers, pagers, notepads, reminders, palm pilots or notebooks.* When therapists and families help train and remind people with stroke to use these things, they work even better.
Cognitive rehabilitation

• **Problem Solving:** Teaching people with stroke strategies to solve problems works. For example, they could be asked to think of a particular problem they've had -- like finding transportation or housing in their community. Next, they can be encouraged to think of all possible ways to solve their problem. Then, they could choose one solution and think about how well it worked in a real life situation.

• **Attention problems:** Practice, repetition, and feedback all can help you learn to be more attentive, especially for complex, real-life tasks.

• **Visual Information Processing, Motor Function.**

• **Elemental Driving Simulator (EDS)** and the functional visual fields programs (PERFIELD) from COGREHAB.
Supportive/Adjunctive

- comorbidities: htn, dm, decubitus ulcers, BPH
- Shoulder support
- Pain control
- Secondary prevention
- Seizure control
- DVT prophylaxis
- Bowels and bladder (communication, detrusor hyperreflexia)
Supportive/Adjunctive

- Feeding (silent aspiration, FEES, NGT, PEG)
- Spasticity treatment
- Prevention of falls (hemineglect, visual, cognitive impairment)
- Management of Neglect (clock, line bisection test)
- Visual rehab
- Sexual rehab
- Care giver burnout
Others

• Biofeedback
• Music therapy
• Hydrotherapy
• Relaxation therapy, psychotherapy, SSRIs
• Recreational therapy
• Vocational therapy
• SALT - speech synthesizers
• FEES, PEG, videofluoroscopy
• Pneumatic mattress, Water bed
• Intermittent pneumatic compressive devices, NMES for DVT prevention
• Neuro-orthopedics
• Acupuncture, TENS
• Visual rehabilitation
Common information needs of stroke patients and their families

- **Risk factors** and causes of stroke
- Availability of **local services** and **support groups**
- **Financial** advice
- Guidance on driving and **transport**
- Medication and **secondary prevention**
- Understanding of an agreed care plan
- Advice on returning to **work** and participation in **leisure** activities
- Discussion of **sexual** issues
Community reentry

Safe driving

Successful return to work easier in those with white collar job and preserved cognitive function and mobility
Some Principles of low cost rehabilitation

• Early/ accurate diagnosis and treatment
• Task sharing/shifting (WHO guidelines) –lower cadre/ family members
• Self-efficacy (education, empowerment, peer-mentorship)
• Integrated care (prevention, surveillance , acute care, rehabilitation)
• Setting... family/ community
• Tele-care
• Universal Health Coverage
AHA/ASA Guideline

Guidelines for Adult Stroke Rehabilitation and Recovery
A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association

Endorsed by the American Academy of Physical Medicine and Rehabilitation and the American Society of Neurorehabilitation

The American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists and the American Congress of Rehabilitation Medicine also affirms the educational value of these guidelines for its members

Accepted by the American Speech-Language-Hearing Association

Carolee J. Weinstein, PhD, PT, Chair; Joel Stein, MD, Vice Chair; Ross Arena, PhD, PT, FAHA; Barbara Bates, MD, MBA; Lorea R. Cherney, PhD; Steven C. Cramer, MD; Frank Deruyter, PhD; Janice J. Eng, PhD, BSc; Beth Fisher, PhD, PT; Richard L. Harvey, MD; Cathcrine E. Lang, PhD, PT; Marilyn MacKay-Lyons, BSc, MScPT, PhD; Kenneth J. Ottenbacher, PhD, OTR; Sue Pugh, MSN, RN, CNS-BC, CRRN, CNRN, FAHA; Mathew J. Reeves, PhD, DVM, FAHA; Lorie G. Richards, PhD, OTR/L; William Stiers, PhD, ABPP (RP); Richard D. Zorowitz, MD; on behalf of the American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Quality of Care and Outcomes Research
Pragmatic Solutions for Stroke Recovery and Improved Quality of Life in Low- and Middle-Income Countries—A Systematic Review

Echezona Nelson Dominic Ekechukwu1,2, Paul Olawoye1,4, Kingsley Obumneke Nwakwara2,4, Olubukola A Olaleye2, Veronica Ebere Ogbodo6, Taihabu Kolapo Harennua1 and Mayowa O Owolabi1,5,7

1 Department of Medical Rehabilitation, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Enugu, Nigeria. 2 LANKST Physiotherapy and Wellness at A Health Centre, Enugu, Nigeria. 3 Department of Medicine, Federal Teaching Hospital, Abakaliki, Nigeria. 4 College of Medicine and Health Sciences, Abia State University, Abakaliki, Nigeria. 5 Stroke Control Innovations Initiative of Nigeria, Kano, Nigeria. 6 Fitness Global Consult Physiotherapy Clinic, Abuja, Nigeria. 7 Department of Physiotherapy, University College Hospital, Ibadan, Nigeria.

Background: Given the limited healthcare resources in low and middle-income countries (LMICs), effective rehabilitation strategies that can be realistically adopted in such settings are required.

Editorial: Translating Innovations in Stroke Rehabilitation to Improve Recovery and Quality of Life Across the Globe

Mayowa O Owolabi1,2,8, Thomas Platz4,5, David Good4, Bruce H Dobkin7, Echezona N D Ekechukwu1,4,6,9 and Leonard Li11

1 Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria. 2 University College Hospital Ibadan.
Disability paradox

Figure 3. Scatter plot of physical domain score of HRQoL versus NIHSS in stroke survivors in Berlin. NIHSS = National Institute of Health Stroke (Severity) Scale. $p$ (two-tailed) = 0.000, $r = -0.777, n = 103.$

FIGURE 3B: SCATTERPLOT OF SPIRIT DOMAIN VERSUS STROKE LEVITY
(BERLIN)
Logotherapy

Victor Frankl

Fabry defn: Therapy through meaning, existential therapy, ontological therapy
The Future ..... Psychospiritual model

Energy therapy...improve ‘will to live’ and live a meaningful life.

Motivate flow of life energy from the “inner being” to the “outer self”

Motivational Psychotherapy
Biofeedback, Cognitive psychotherapy plus

Spiritual Psychotherapy
Meditation, Introspection, Resonance, Prayer, Scriptural therapy

Energy therapy

Spiritual Music therapy

Motivational Artwork
(Regular/Surreal/Ethereal/Meta-physical/Transcendental/Creative/WordArt/Drama &Theatre arts)

Mayowa Owolabi
Neurology Revolution

New Concepts & Global policies

One health
Brain health
Holistic health
Neurologic quadrangle
Synergy, Inclusiveness, diversity, equity

Co-design, co-implementation ecosystem including whole of government, interdisciplinary, multisectoral with all stakeholders and 6Ps

Social media
Mobile Health, digital tools
Global Initiatives e.g. WHO IGAP,
Rehabilitation 2030, Brain health,
One neurology, WHO NCD, etc.

BIOPHYSICAL WING

Neuroimplants
Planetary health
Artificial Intelligence
Human Brain Project
Regenerative medicine
Human Affectome Project
Human Connectome Project
Neurotechnologies & Neurostimulation
Genetic engineering and gene therapy
Brain Computer Interfaces
Stem cell therapies
Neuro-transomics
Neuro-genomics
Neuro-robotics

PSYCHOSPIRITUAL WING

Neurophilosophy
Medical sociology
Neuro-musicology
Literary arts, Poetry
Creative and Expressive arts
Communication & Language arts
Theatre and Performance arts
Medical Humanities
Spiritual psychology
Neuropsychology
Neurolinguistics
Neuroethics
BIONIC EYE

Neurostimulation

Neuroimplant

Neurorobotics
Neurotechnology

- Market expansion by 75% until 2026 to 17.1 billion USD
- Increase of patent applications by 500% over the last 10 years
**Temporal Interference Magnetic Stimulation (TIMS)**

- no implantation
- mm-precise modulation of the deep brain
- flexible targeting
- no sensory confound (muscle/nerve stimulation or clicking)

**Transcranial electric stimulation (TES)**

**Transcranial magnetic stimulation (TMS)**

**Transcranial Focused Ultrasound (tFUS)**

*Courtesy SURJO*
Courtesy SURJO SOEKADAR
Virtual Reality

Augmented Reality

Mixed Reality
Human Affectome Project
Spiritual wellbeing involves finding and living one’s life purpose and understanding the values and beliefs that guide one’s actions.

Finding and living one’s place, position and purpose in the universe/grandplan.
Neuromusicology
Ethereal art

Surreal art
Spiritual Psychology combines the spiritual and transcendent features that influence the human experience beyond the body, mind, and emotions hence making it more accessible and acceptable by people. It is also called transpersonal psychology.

Conventional Psychology

It focuses on three areas - physical, mental and emotional.

It is based on the concept of impermanence & helps you cope with the constant changes like what you do, what you think and what you feel.

Spiritual Psychology

It focuses on four areas - physical, mental, emotional and core being or inner self.

It can help you experience peace, joy, unconditional love & to live your life in harmony both inside and out by accessing your inner self or your core.
Flow of Life

Spirit
- Guidance
- Love
- Light
- Knowledge

Soul
- Intuition
- Inspiration
- Initiative
- Creativity
- Instinct

Mind
- (Intellect: thoughts, psyche: feelings)
- Lesioning: e.g., Klüver-Bucy syndrome
- Frontal/Temporal lobe syndromes
- Psychadelic/Psychotropic drugs
- Hallucinogens, Induced OBEs
- Hypnotism
- Dementia

Brain and Body
- (Brain is the substrate of the mind, the focal point of the senses, source of motor and director of autonomic and endocrine activity)
- Senses
- Speech
- Action and Reaction
- Irritability

Eco-social milieu

The soul is the real self. The consciousness of the outer world requires the activation of the pons of the mind through the brainstem.
Improving Stroke Rehabilitation: **TREAT**

**Therapies:**
- Availability of therapists for multi-disciplinary care,
- Increase number of settings for care,
- Teleservices,
- Task sharing

**Research:** Low-cost effective pragmatic solutions,
- Prevention of complications,
- Locally produced assistive devices,
- Guidelines for rehab

**Enlightenment:** CE activities, video, applied theatre, phone apps, social media, etc.
- Inform, Inspire, Involve,
- Education of patients, family, care givers

**Advocacy:** WHO, MoH, NGOs, ASO, Communities,
- National action plan, Regional action plan,
- WHO Lancet commission,

**Training:** Webinars, Workshops, Conferences, Postgraduate programs, career paths for therapists
Figure 1: Primordial, Primary and Secondary Prevention of Stroke

Primordial prevention

- Non-modifiable Risk Factors: Age, Sex, Genes

Primary prevention

- Political, Legal, Ethical, Anthropological, Socio-educational, Economic (PLEASE), Environmental

Secondary prevention

- Behavioural Risk Factors:
  - Tobacco
  - Stress
  - Air pollution
  - Diet
  - Alcohol
  - Physical Inactivity

Intermediate Risk Factors

- Hypertension
- Obesity / Overweight
- Prediabetes and Diabetes mellitus
- Dyslipidemia

Endpoints

- Stroke
- Ischemic Heart Disease
- Dementia
- Peripheral vascular disease
- Several cancers
- Chronic obstructive pulmonary disease

Atherosclerosis
Modifiable risk factors for stroke

SIREN: 1 patent, 2 Bruce Schonberg Awards, 4 Paul Dudley White Awards
~100 publications, >40 presentations

Dominant modifiable risk factors for stroke in Ghana and Nigeria (SIREN): a case-control study

Mayowa Owoibi, Fred Sifiso, Reijan Alimeh, Michael Godefroob, Onyok Akuja, Albert Aregba, Efiomok Wilab, Regina Austin, Ekramun Obaigie, on behalf of the SIREN team. As part of the Africa Consortium

Summary
Background: Sub-Saharan Africa has the highest incidence, prevalence, and fatality from stroke globally. Yet, only limited information about context-specific risk factors for prioritising interventions to reduce the stroke burden in sub-Saharan Africa is available. We aimed to identify and characterise the effect of the top modifiable risk factors for stroke in sub-Saharan Africa.

Methods: The Stroke Investigation Research and Educational Network (SIREN) study is a multicentre, case-control study done at 15 sites in Nigeria and Ghana. Cases were adults aged ≥18 years with stroke confirmed by CT or MRI. Controls were age-matched and gender-matched stroke-free adults aged ≥18 years recruited from the communities in catchment areas of cases. Comprehensive assessment for vascular, lifestyle, and psychosocial factors was done using standard instruments. We used conditional logistic regression to estimate odds ratios (ORs) and population attributable risks (PARs) with 95% CIs.

Findings: Between Aug 28, 2014, and June 15, 2017, we enrolled 2188 case-control pairs (1192 [56%] men) with mean ages of 55-9 years (SD 13-8) for cases and 37-5 years (13-7) for controls. 1430 (66%) had ischaemic stroke, 682 (32%) had haemorrhagic stroke, and six (0.2%) had a mixed ischaemic and haemorrhagic lesions. 99.2% (90% CI 97.2–99.9) of arterial PAR of stroke was associated with 11 potentially modifiable risk factors with PARs ranked in descending order of PAR at 99.2% (95% CI 97.2–99.9) for hypertension, 85.4 (4.4–2.3) and 35.9 (5.3–4.6) for dyslipidaemia, 3.59 (1.92–2.13) and 3.15 (1.39–4.10) for regular meat consumption, 1.49 (1.13–1.94) and 1.26 (0.92–1.74) for reduced waist-to-hip ratio, 2.83 (1.96–3.77) and 2.12 (1.78–2.64) for diabetes, 2.43 (1.83–3.32) and 1.82 (1.42–2.20) for low green leafy vegetable consumption, 1.99 (1.62–2.54) and 1.16 (0.62–1.96) for stress, 2.14 (1.34–3.48) and 1.53 (1.30–1.83) for dietary salt at the table, 1.05 (1.02–1.09) and 1.03 (1.03–1.05) for alcohol use at least once a week, and 3.39 (1.95–6.07). For each additional risk factor, the non-inclusion of early mortality data and assessment of the effects of identified risk factors on this outcome. PAR is derived as the difference between the incidence of a disease in the total population and the incidence in the subpopulation unexposed to the targeted risk factor. Measures of incidence are estimated from case-control studies.

Modifiable stroke risk factors in Africa: lessons from SIREN

Hypertension
Dyslipidaemia
Diabetes Mellitus
Cigarette smoking
Stress
Cardiac diseases
Raised Waist-Hip ratio
High meat consumption
Monthly income>$100
Regular physical activity
Regular vegetable intake
Alcohol consumption
Family history of CVD

Mayowa Owolabi
**Figure: Dose-response relationships with stroke**

- **Income (US$)**
  - 0-100 (reference)
  - 101-250: 1.49 (1.11-1.99)
  - 251-500: 1.36 (0.92-2.00)
  - 501-1500: 1.41 (0.81-2.48)
  - >1500: 1.80 (0.86-3.79)

- **Salt**
  - Never or rarely (reference)
  - Occasionally: 2.39 (1.64-3.48)
  - Very often: 3.04 (1.84-5.03)

- **Meat**
  - Never or <1 monthly (reference)
  - Monthly: 1.27 (0.86-1.88)
  - Weekly: 1.58 (1.13-2.22)
  - Daily: 1.45 (0.99-2.14)

- **Vegetable**
  - Never or monthly (reference)
  - Weekly: 0.70 (0.52-0.95)
  - Daily: 0.27 (0.19-0.38)
Indigenous Africans who consumed at least 12 servings of vegetables per week were significantly less likely to be found hypertensive, particularly among males and young adults.

**Figure 3** Restricted cubic splines for the association between vegetable consumption and the odds of hypertension among all 16,445 participants in the SIREN and AWI-Gen studies. Green lines denote the odds ratio (OR), and grey shades represent the 95% confidence intervals. Knots were positioned at the 5th (as reference), 25th, 50th, and 75th percentiles (0, 4, 10, and 30 servings/week) of vegetable consumption. The model was multivariable-adjusted for age, sex, and body mass index.
Primordial prevention
- Improving socioeconomic conditions and reducing poverty
- Building healthy cities and homes
- Universal health coverage
- Provision of affordable healthy food and facilities for physical activity
- Reducing air pollution, tobacco use, and consumption of salt, sugar, trans fats, and alcohol
- Public health campaigns to raise awareness about stroke and stroke risk factors

Primary prevention
- Screening for cardiovascular risk factors
- Risk factor control in all people at any increased risk of stroke
- Interlinked eHealth tools for lay people and clinicians
- Polypill and anticoagulation (when indicated)

Secondary prevention
- Adequate treatment of stroke and transient ischaemic attack, including antithrombotic therapy, use of polypills, and carotid revascularisation
Figure 1: Summary of various measures for primordial, primary, and secondary prevention of stroke
FCTC=Framework Convention on Tobacco Control. mHealth=mobile technology devised to support health.
MPOWER=monitoring tobacco use and policies, protecting people from tobacco, offering help to quit, warning

Stroke 3
Prevention of stroke: a global perspective
Secondary Prevention After Ischemic Stroke or Transient Ischemic Attack

- Attention to lifestyle factors (including smoking cessation, regular exercise, and weight control) is routinely warranted.
- Blood-pressure lowering, blood sugar control, cholesterol lowering with statins, and antiplatelet drugs have been shown to reduce the risk of recurrent stroke and other vascular events.
- Effective secondary-prevention strategies for selected patients include carotid revascularization for high-grade carotid stenosis and anticoagulation therapy for atrial fibrillation.
- In patient initially and later outpatient care for control.
2021 Guideline for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack

A Guideline From the American Heart Association/American Stroke Association

Reviewed for evidence-based integrity and endorsed by the American Association of Neurological Surgeons and Congress of Neurological Surgeons.

Endorsed by the Society of Vascular and Interventional Neurology

The American Academy of Neurology affirms the value of the statement as an educational tool for neurologists.

Dawn O. Kleindorfer, MD, FAHA; Chair; Amylia Towfighi, MD, FAHA; Vice Chair; Seemant Chaturvedi, MD, FAHA; Kevin M. Crockford, MD, MSc; FAHA; Jose Gutierrez, MD, MPH; Debbie Lombardi-Hill, BS, FAHA; Howard Kamel, MD; Walter Krieger, MD, MPH, FAHA; Enrique C. Leib, MD, MS, FAHA; Obe Lennon, PhD; James F. Meschia, MD, FAHA; Thanh N. Nguyen, MD, FAHA; Peter M. Pollak, MD; Paragale Santangelo, MD, PhD; Anjali Z. Sharma, MD, MPH, FAHA; Sidney C. Smith Jr, MD, FAHA; Tanya N. Turan, MD, MS, FAHA; Linda S. Williams, MD, FAHA

Key Words: AHA Scientific Statements • ischemic attack • transient • secondary prevention • stroke

TOP 10 TAKE-HOME MESSAGES FOR THE SECONDARY STROKE PREVENTION GUIDELINE

1. Specific recommendations for prevention strategies often depend on the ischemic stroke/transient ischemic attack subtype. Therefore, new in this guideline is a section describing recommendations for the diagnosis workup after ischemic stroke, to define ischemic stroke etiology (when possible), and to identify targets for treatment in order to reduce the risk of recurrent ischemic stroke. Recommendations are now grouped by etiologic subtype.

2. Management of vascular risk factors remains extremely important in secondary stroke prevention, including (but not limited to) diabetes, smoking cessation, lipids, and especially hypertension. Intensive medical management, often performed by multidisciplinary teams, is usually best, with goals of therapy tailored to the individual patient.

3. Lifestyle factors, including healthy diet and physical activity, are important for preventing a second stroke. Low-salt and Mediterranean diets are recommended for stroke risk reduction. Patients with stroke are especially at risk for sedentary and prolonged sitting behaviors, and they should be encouraged to perform physical activity in a supervised and safe manner.

4. Changing patient behaviors such as diet, exercise, and medication compliance requires more than just simple advice or a brochure from their physician. Programs that use theoretical models of behavior change, proven techniques, and multidisciplinary support are needed.

5. Antithrombotic therapy, including antplatelet or anticoagulant agents, is recommended for nearly all patients without contraindications. With very few exceptions, the combination of antplatelets and anticoagulation is typically not indicated for secondary stroke prevention. Dual antplatelet therapy is not recommended long term, and short term, dual antiplatelet therapy is recommended only in very specific patients, including those with early arriving minor stroke and high-risk transient ischemic attack or severe symptomatic intracranial stenosis.

6. Atrial fibrillation remains a common and high-risk condition for second ischemic stroke. Anticoagulation is usually recommended if the patient has no contraindications. Heart rhythm monitoring for occult atrial fibrillation is usually recommended if no other cause of stroke is discovered.

7. Extracranial carotid artery disease is an important and treatable cause of stroke. Patients with severe stenosis ipsilateral to a nondisabling stroke or transient ischemic attack who are candidates for intervention should have the stenosis fixed, likely relatively early after their ischemic stroke. The choice between carotid endarterectomy and carotid artery stenting should be driven by specific patient comorbidities and features of their vascular anatomy.

8. Patients with severe intracranial stenosis in the vascular territory of ischemic stroke or transient ischemic attack should not receive angioplasty and stenting as a first-line therapy for preventing recurrence. Aggressive medical management of risk factors and short-term dual antplatelet therapy are preferred.

9. There have been several studies evaluating secondary stroke prevention of patent foramen ovale closure since the previous guideline in 2014. It is now considered reasonable to percutaneously close patent foramen ovale in patients who meet each of the following criteria: age 18–60 years, nonlumen stroke, no other identified cause, and high risk patent foramen ovale features.

10. Patients with embolic stroke of uncertain source should not be treated empirically with anticoagulants or ticagrelor because it was found to be of no benefit.
Figure 2. Algorithm for evaluating patients with a clinical diagnosis of stroke for the purposes of optimizing prevention of recurrent ischemic stroke.
African Proverb

If you want to go fast, go alone.
If you want to go far, go together.

Africa needs the collaborative efforts to improve stroke rehabilitation and prevention in Africa
CONSENSUS STATEMENT

African Control of Hypertension through Innovative Epidemiology and a Vibrant Ecosystem (ACHIEVE): novel strategies for accelerating hypertension control in Africa


© The Author(s), under exclusive licence to Springer Nature Limited 2023, corrected publication 2023

Hypertension is a leading preventable and controllable risk factor for cardiovascular and cerebrovascular diseases and the leading preventable risk for death globally. With a prevalence of nearly 50% and 93% of cases uncontrolled, very little progress has been made in detecting, treating, and controlling hypertension in Africa over the past thirty years. We propose the African Control of Hypertension through Innovative Epidemiology and a Vibrant Ecosystem (ACHIEVE) to implement the HEARTS package for improved surveillance, prevention, treatment/acute care of hypertension, and rehabilitation of those with hypertension complications across the life course. The ecosystem will apply the principles of an iterative implementation cycle by developing and deploying pragmatic solutions through the contextualization of interventions tailored to navigate barriers and enhance facilitators to deliver maximum impact through effective communication and active participation of all stakeholders in the implementation environment. Ten key strategic actions are proposed for implementation to reduce the burden of hypertension in Africa.
Center for Genomics and Precision Medicine and African Research Universities Alliance (ARUA), University of Ibadan Centre of Excellence in Non-Communicable Diseases

In partnership with World Hypertension League (WHL) and Resolve to Save Lives (RTSL)

Presents

A TWO-DAY CONFERENCE ON NOVEL STRATEGIES FOR ACCELERATING HYPERTENSION CONTROL IN AFRICA

THEME:
African Control of Hypertension through Innovative Epidemiology and a Vibrant Ecosystem (ACHEIVE)

Date(s): July 27th - 28th 2023
Time: Commences 9am (Nigerian Time) Daily

Venue: International Conference Center, University of Ibadan, Ibadan, Nigeria

Contact: aruandcui@gmail.com

Mayowa Owolabi
ASO Vision and Mission

**Vision**: reducing the burden of stroke in Africa

**Mission**: to reduce the burden of stroke in Africa through:

- multidisciplinary research and capacity building,
- promoting the development of effective stroke prevention and intervention services,
- enhancing stroke awareness, advocating for stroke survivors and their families/caregivers and
- driving the formulation of stroke-friendly policies across multiple levels of policy making in African nations’

- Launched 22 Oct 2020

Dr Rufus Akinyemi | Prof Mayowa Owolabi | Mr Ad Adams Ebenezer
(Chair, Steering Committee) | (Co-Chair, Steering Committee) | (Secretary, Steering Committee)
African Stroke Organization
Presents
THIRD ANNUAL (HYBRID) AFRICAN STROKE ORGANIZATION CONFERENCE (ASOC 2023)

THEME:
Promoting Brain Health through Stroke Prevention and Control
Venue: The International Conference Centre,
University of Ibadan, Nigeria and Virtual
Date(s): November 2nd - 3rd 2023
Time: From 10am (West African/Nigerian Time) daily

IMPORTANT TIMELINES:
- Abstract submission deadline: August 7th, 2023
- All abstracts should be within 250 word limit excluding maximum, one figure or table (optional)
- All abstracts should be sent: asoconference2023@gmail.com

Abstract acceptance notification deadline: August 31st, 2023
Deadline for registration: October 31st, 2023

Accepted Abstracts will be published in the Journal of Stroke and Cerebrovascular Diseases

Prior Separate Meeting:
WFNR Africa - NFNR Conference:
October 31st - November 1st, 2023

Mayowa Owolabi
Acknowledgement

We acknowledge the contributions of of Prebo Barango, Alarcos Cieza, Tarun Dua, Wouter De Groote, Taskeen Khan, Pauline Kleinitz, Jody-Anne Mills, Alexandra Rauch, Nicoline Schiess, Slim Slama, and Cherian Varghese of WHO in reviewing and editing this Commission.

World Stroke Organization—Lancet Neurology Commission Steering Committee
Mayowa O Owolabi (co-chair), Valery L Feigin (co-chair), Foad Abd-Allah, Semaw Ferede Abera, Rufus O Akinyemi, Michael Brainin, Valeria Caso, Robert J Dempsey, Gary A Ford, Seana Gall, Dorcas Gandhi, Vladimir Hachinski, Werner Hacke, Graeme J Hankey, Norlinah Mohamed Ibrahim, Walter Johnson, Pablo Lavados, Liping Liu, Patrice Lindsay, Sheila Martins, Bo Norrving, Muideen Olaiya, Bruce Ovbiagele, Jeyaraj Pandian, Hoang Phan, Michael Piradov, Thomas Platz, Anna Ranta, Greg Roth, Ivy Anne Sebastian, Nijasri Suwanwela, P N Sylaja, Amanda G Thrift, Ezinne Uvere, Joseph Yaria.

World Stroke Organization—Lancet Neurology Commission writing group
Global Award for Outstanding Contributions to Clinical Stroke Research

AWARD CERTIFICATE

This is to certify that

Mayowa Owolabi, Nigeria

received the

WSO Award for Contributions to Clinical Stroke Research

at the

13th World Stroke Congress
VIRTUAL | 28-29 October 2021

Mayowa Owolabi
Acknowledgement
Thank you