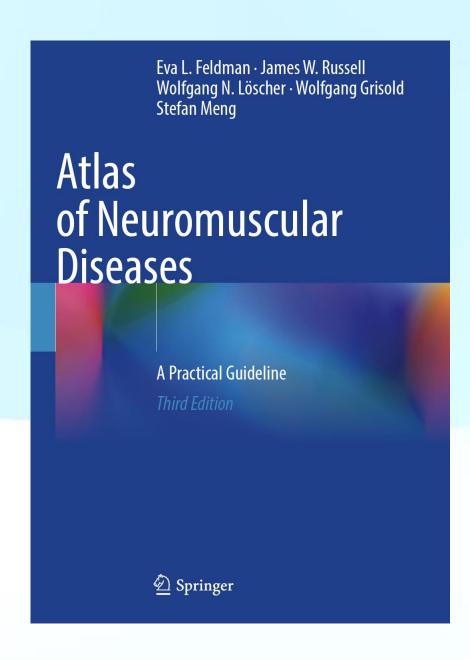
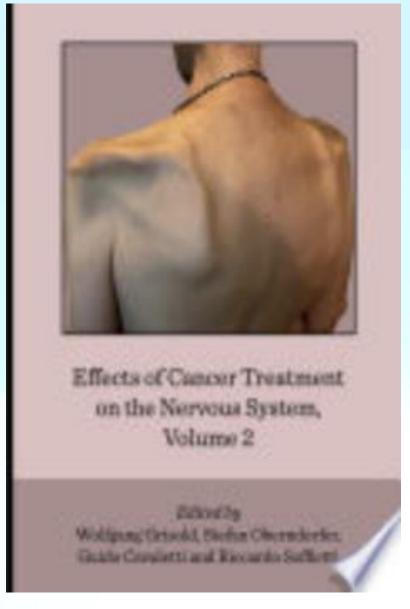
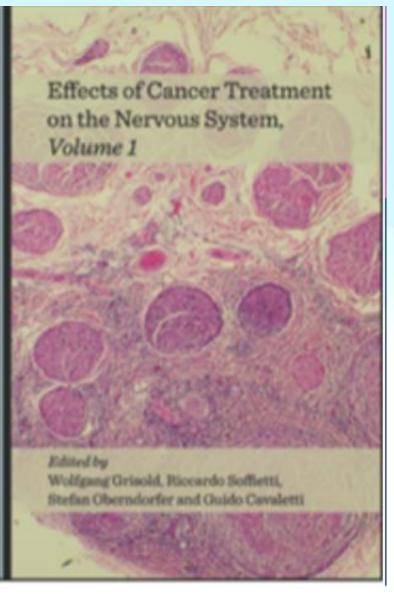


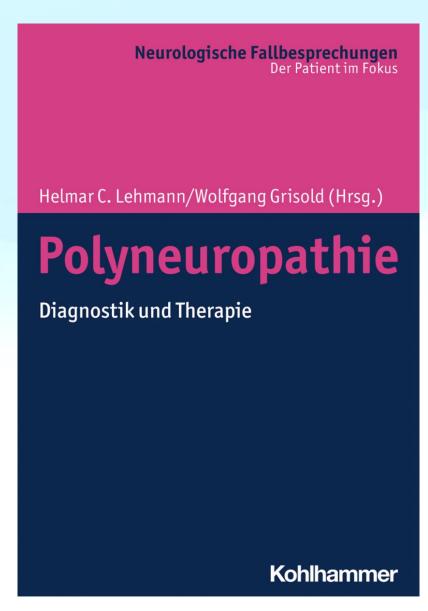
Acute Neuro-myopathies

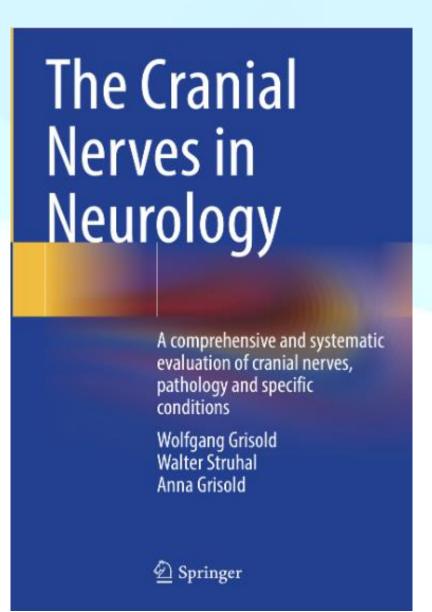
5. Acute neuro-myopathies Wolfgang Grisold (Austria) - WFN


Anna Grisold, Dr. Dr., Stefan Meng Doz. Dr. (Vienna Austria)


No COI


Authors contributed equally in their parts


Images and slides were used from own


Neuromuscular Publications

3 rd edition In Press

One Russian

translation

Content

- Tools
- Clinical investigation,Status,
- Minimal biomarkers:
 Blood,
 Electrolytes CK,
 CSF
- NCV (later EMG)

- Internal Medicine
- Imaging
- Lab- extended
- (Genetics)
- (Biopsy)
- Microbiology

Second line:

Time -perspective

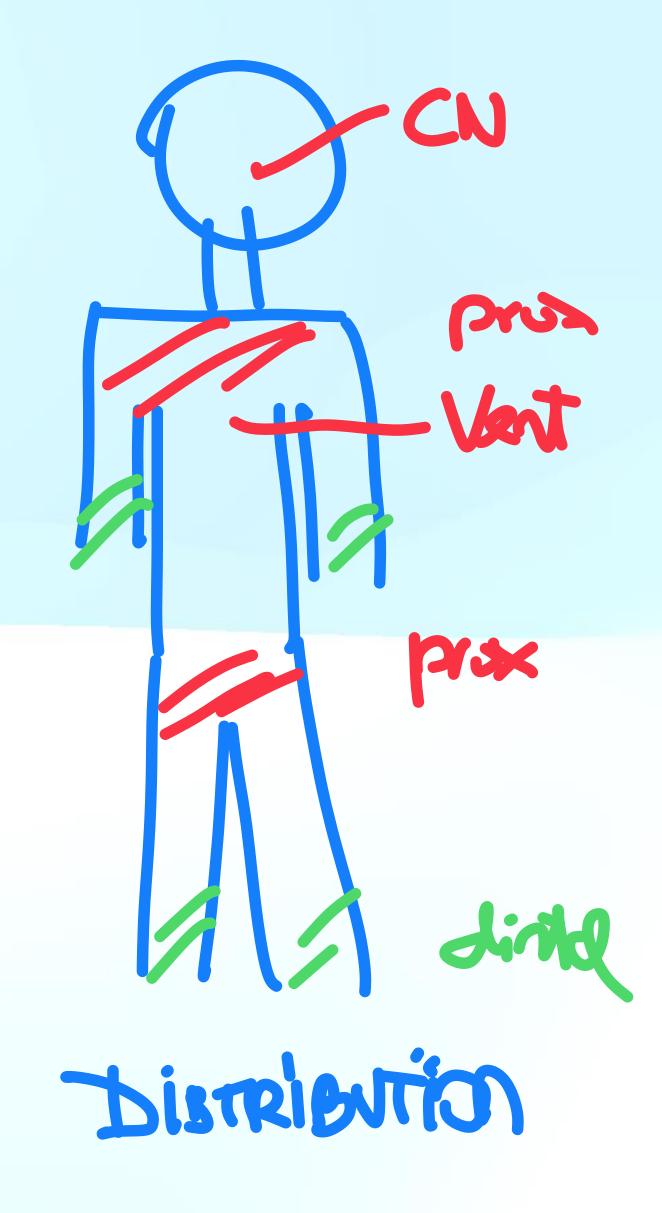
Acute

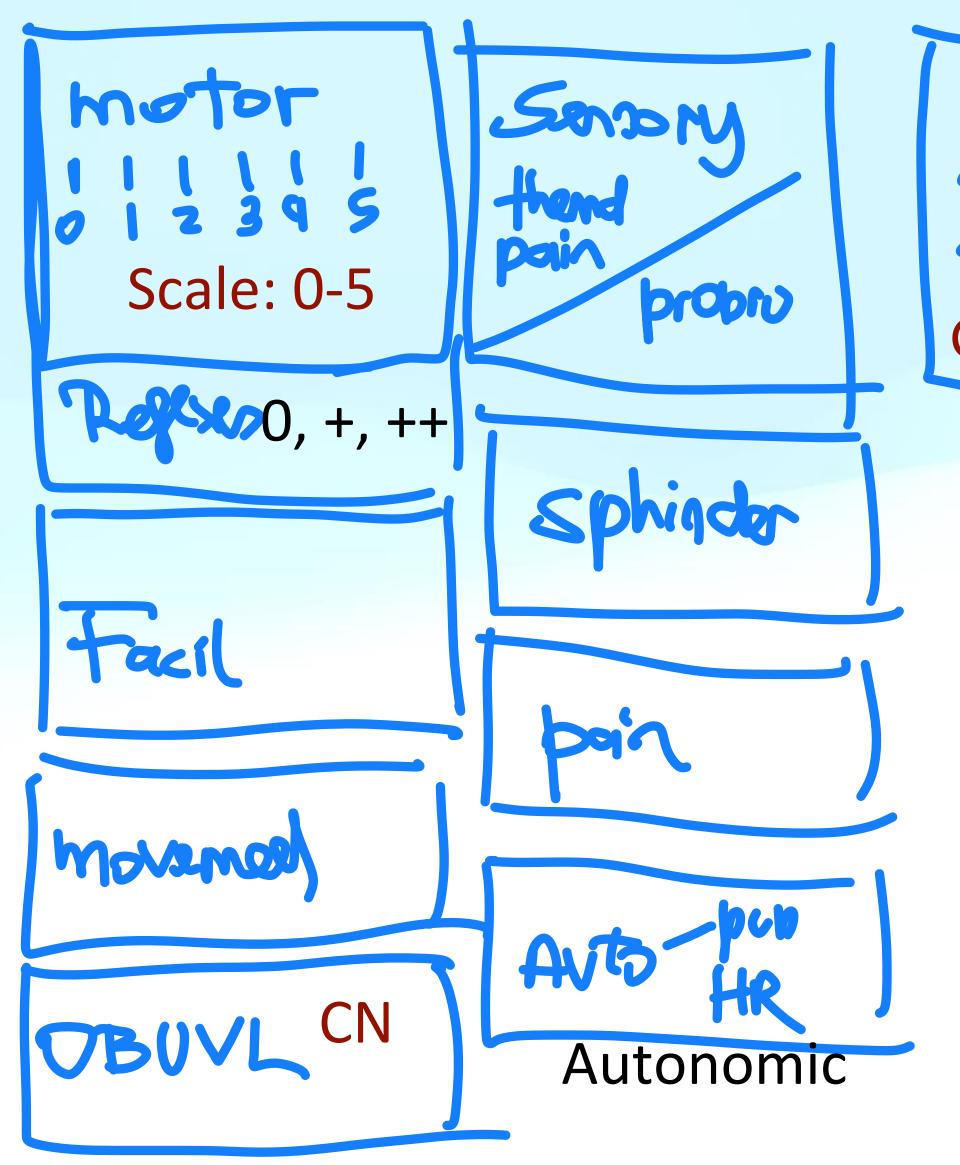
Sensory?

Symmetric /asymmetric

Additional: CNS, CN, Autonomic

Acute, Sub Acute?


Examination and questions:


- Motor acute paresis
 - Distribution
- Sensory involvement
 - Sensory level
- Reflexes (motor/sensory = NCV)
- Respiration

- Sphincter control
- Cranial nerves
- Time acute, subacute progressive, waxing and waning.
- Pain, Sphincter function, Autonomic
- Movements, coordination, ataxia

Distribution of weakness

Scales and other functions

posture Sit, Aand Soldinan

General assessment

Central, Pons, Medulla, Spinal cord	Nerve Roots DRG	Peripheral Nerves	NMT	Muscle	Specific condition
Hypoglossal Nucleus Dorsal Vagal Nucleus Fourth Ventricle Posterior Coch Nucleus Inferior V Nuc Trigerr an Anterior Coch Nucleus Lateral Spino- cerebellar tract I Accessory I Nucleus Pyramid Arcuate Nucleus Olivary (100 × 378)			Ach vesicle Active zone Active zone Active zone Active zone Active zone Basal lamins AchR Rapsyn Muscl		Sensory ataxia
Tracts	Mot/Sensory roots		Pre-		
Neurons	DRGs		Post synaptic	Muscle fibers	
	Plexus		, •	Fibrous tissue	
Peripheral nerves			Fasciae		
	Axons			Vessels	
	My	yelin			

Vessels

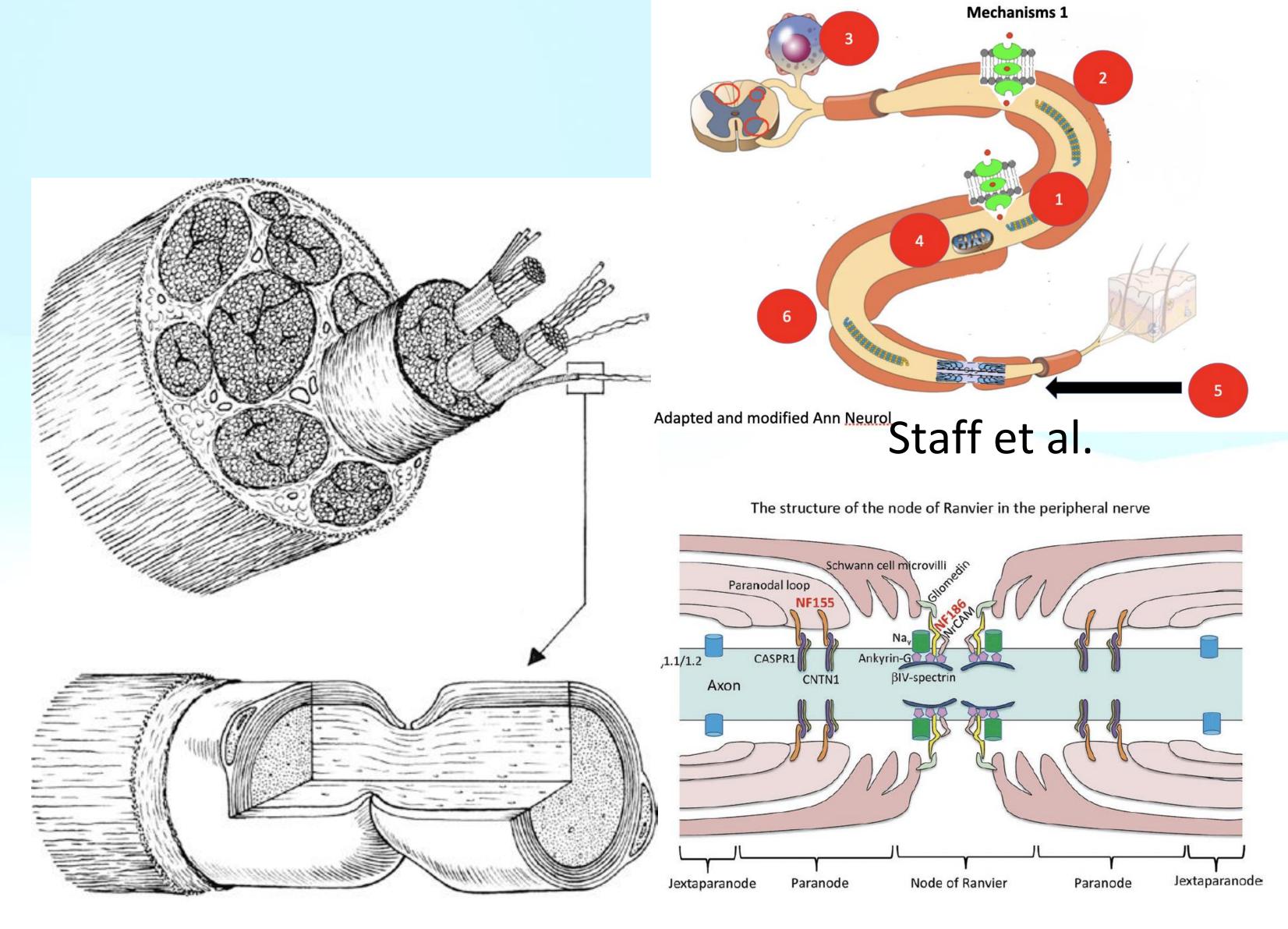
Frequency of NM Weakness

	Central, Pons, Medulla, Spinal cord	Nerve Roots DRG	Peripheral Nerves	NMT	Muscle	Specific condition
+++	Cervical spine	GBS and variants	Acute toxic, IT therapy	Myasthenia gravis	Necrotizing Inflammatory	ICU
++	Brainstem		Infections	Botulismus	Channelopathy Hypokaliemic	Sensory
+	Poliomyelitis	SSN	Metabolic	Combat toxins, warfare, bio terrorism	Metabolic	
		Neoplastic	Neoplastic			
			Genetic neuropathy and chemotherapy			

Causes

Vascular

Inflammatory and Autoimmune


"Granulomatose"

Infection

Toxic

Metabolic

Neoplastic

Feldman et al

cell adhesion molecule. (Reprinted from Neurochemistry International, Volume 130, Kira et al. Anti-neurofascin autoantibody and demyelination, Pages 104360, Copyright 2019, with permission from Elsevier)

Central,
Pons, Medulla, Spinal
cord

Nerve Roots DRG

Peripheral Nerves

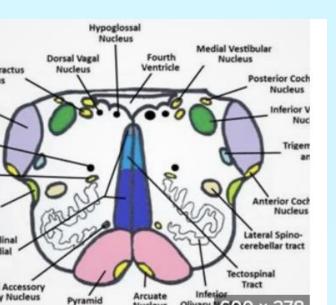
NMT

Muscle

Specific condition

Central Causes as differential

Vascular: pontine infarcts, bilateral anterior medullary infarction


Central Pontine Myelinolysis (CPM)

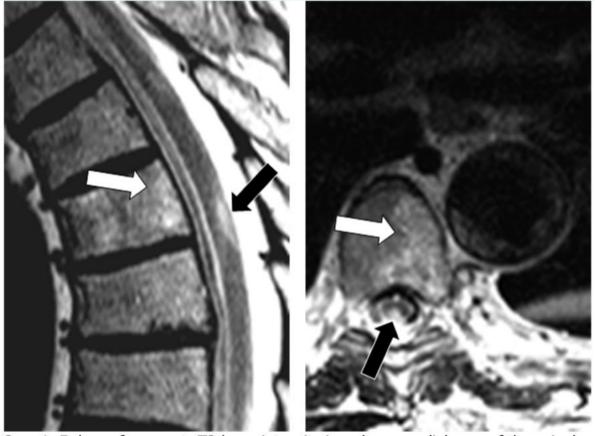
Transverse Myelopathy (inflammatory, parainfectious, paraneoplastic)

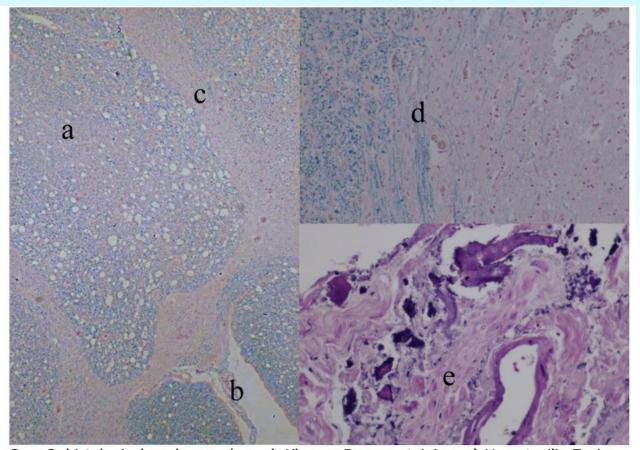
Spinal anterior and posterior artery syndrome

Myelopathy: Immune, paraneoplastic, parainfectious

Anterior horn cell disease: eg. Poliomyelitis, Acute Flaccid Myelitis, EV-D68

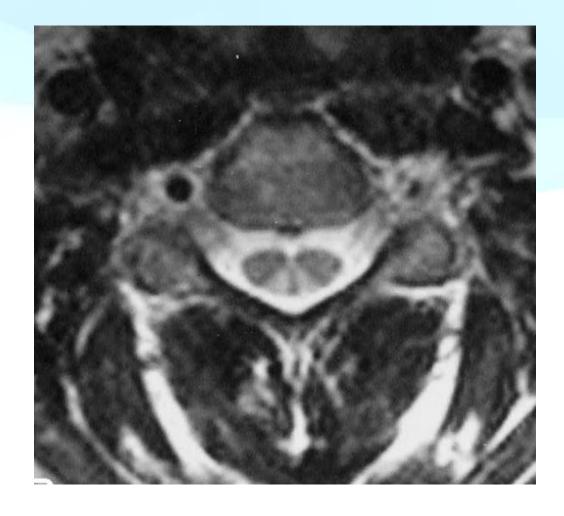
Bilateral medial medullary infarction: a systematic review. J Stroke Cerebrovasc Dis 2013 Aug;22(6):775-80.


CPM


Transverse myelitis

Central, Pons, Medulla, Spinal cord	Nerve Roots DRG	Peripheral Nerves	NMT	Muscle	Specific condition
-------------------------------------	--------------------	-------------------	-----	--------	--------------------

Spinal anterior and posterior artery syndrome


Case 1, 5 days after onset: T2-hyperintensity in a dorso-medial area of the spinal con at level TH6/7 (a) and of the left lateral parts of vertebral body TH6 (b)

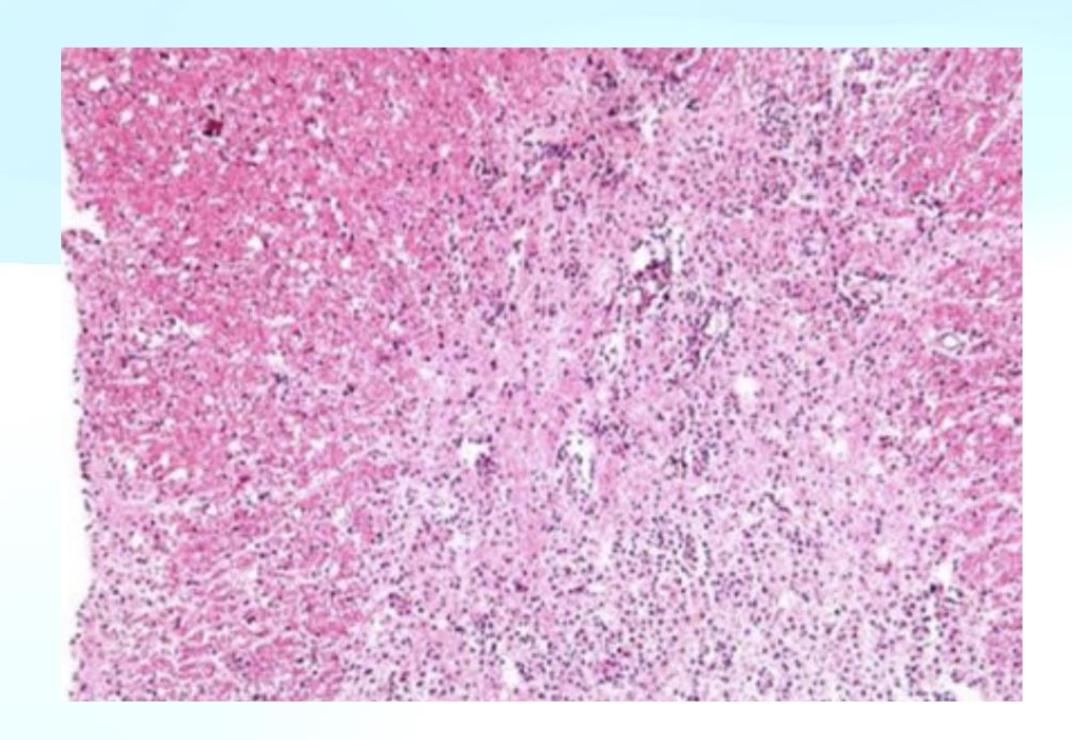
Case 2, histological workup: a, b, c, d: Kluever-Barrera staining, e) Hematoxilin Eosin staining; a) vacuolar ischemic myelopathy of dorsal column, b) anterior median fissure, c) dorsal horn with signs of ischemic lesion, d) borderline between healthy (left) and ischemic (right) area, e) left: calcerous embolism, right: arteriole

AJNR Am J Neuroradiol 1998, 19 (5) 894-896

r Neurol

actions

- Search in PubMed
- Search in NLM Catalog
- Add to Search


. 2011;65(4):183-6. doi: 10.1159/000324722. Epub 2011 Mar 10.

Clinical core symptoms of posterior spinal artery ischemia

Walter Struhal 1, Thomas Seifert-Held, Heinz Lahrmann, Franz Fazekas, Wolfgang Grisold

Central, Pons, Medulla, Spinal cord	Nerve Roots DRG	Peripheral Nerves	NMT	Muscle	Specific condition
---	--------------------	-------------------	-----	--------	--------------------

Poliomyelitis & exacerbation of the Postpolio syndrome in some general conditions. (infection, metabolic issues)

Widdicombe

Rare: Respiratory initial presentation of MND

Nerve Roots DRG

Peripheral Nerves

NMT

Muscle

Specific condition

GBS and variants

West Nile

Radiculopathies: Inflammatory, toxic,

neoplastic

Genetic neuropathies and

chemotherapy

Fig. 12.14 Clinical findings in acute inflammatory demyelinating polyneuropathy (GBS). (a) Incomplete mouth closure due to a bilateral VII palsy. (b) Slightly asymmetric incomplete lid closure. (c) Right frontal muscle remains partially intact. (d) Arm raising with only mild

elevation. (e) Positive Beevor's sign as a sign of abdominal muscle weakness. (f) Weakness of leg elevation (Images are adapted from a video)

Feldman et al

Central, Pons, Medulla, Spinal cord Nerve Roots DRG Peripheral Nerves	NMT	Muscle	Specific condition	
---	-----	--------	--------------------	--

GB

Abb. 8.1:

Elektroneurografie:
Untersucht wurden
motorisch der N. tibialis und der N. ulnaris
rechts, sensibel der N.
suralis und der N.
ulnaris rechts. Beide
motorische Nerven
zeigen verlängerte FWellenlatenzen, bei
Ableitung des N. tibialis finden sich zusätzlich A-Wellen (Pfeil).

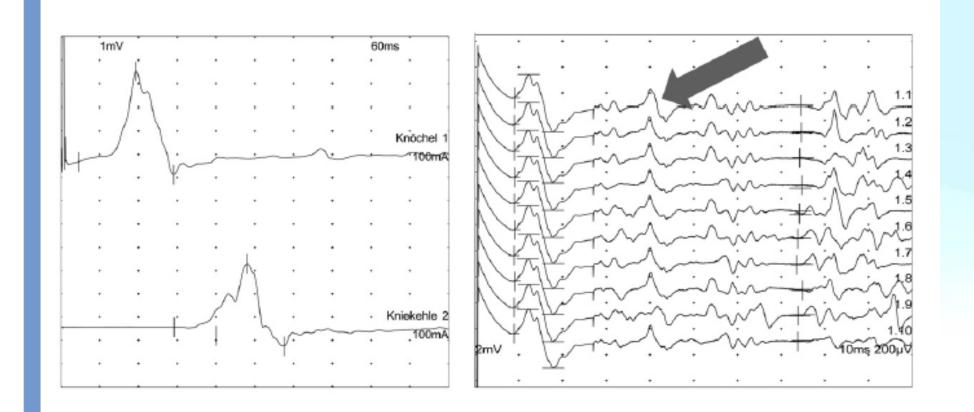
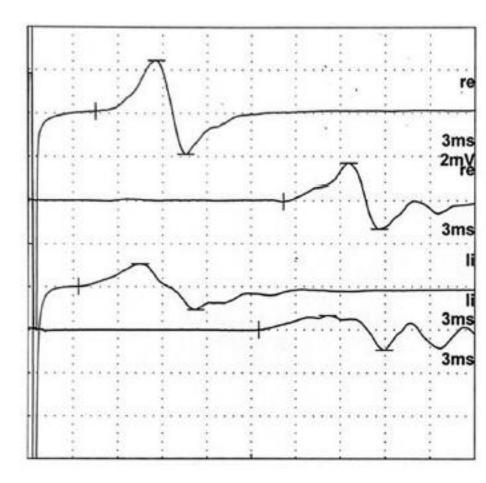
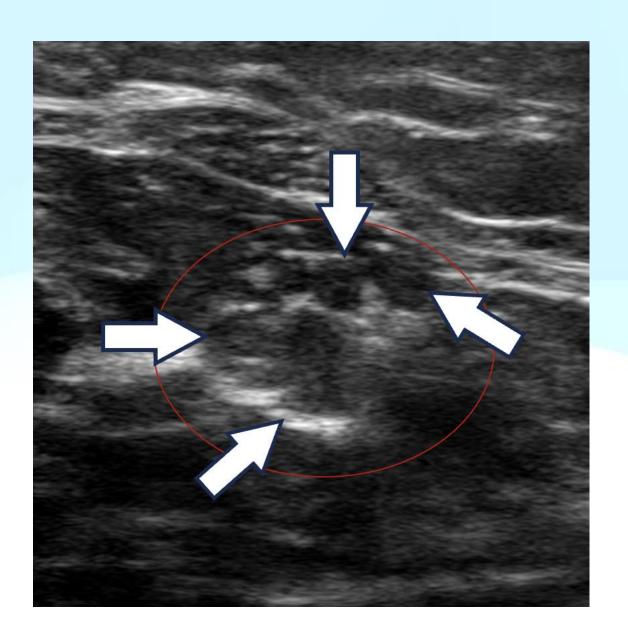




Abb. 7.1:

N. tibialis bds. insbesondere proximal mit deutlicher Chronodispersion und verlangsamter mNLG

Lehmann et al

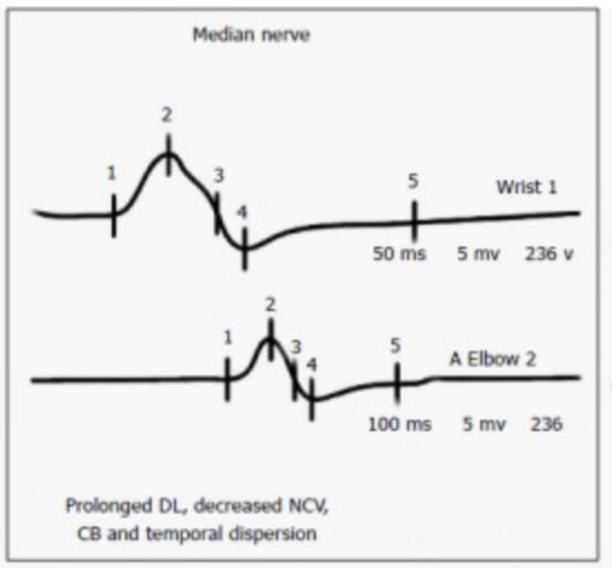
Ultrasound

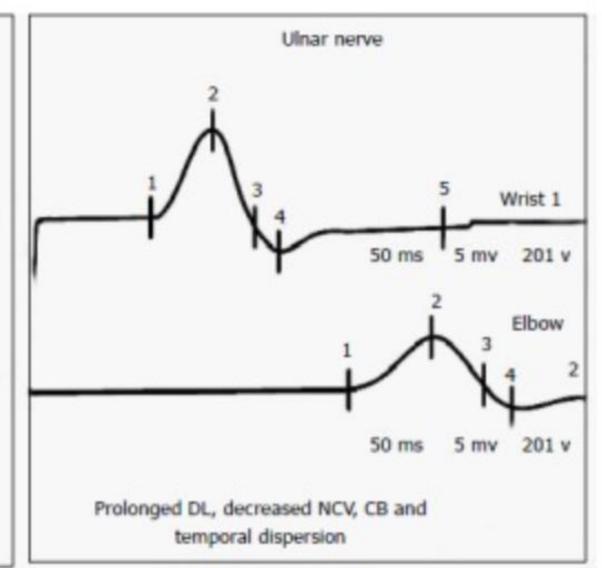
Median nerve

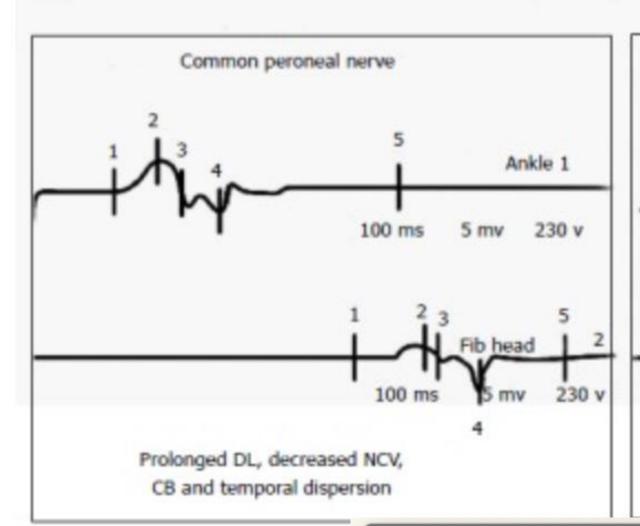
thickened

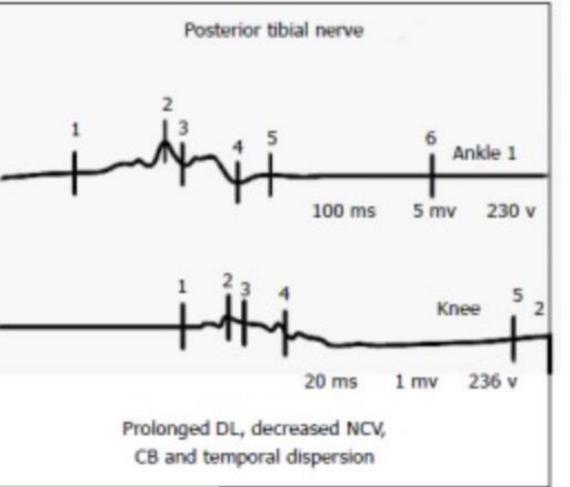
Dr Meng

Nerve Roots DRG


Peripheral Nerves

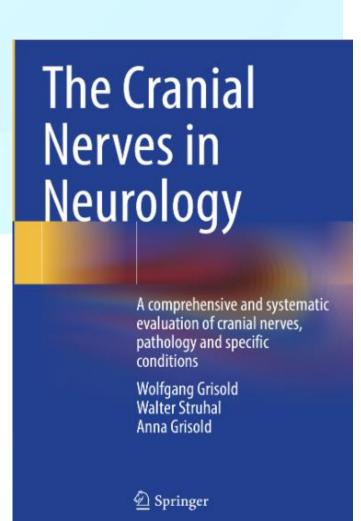

NMT


Muscle


Specific condition

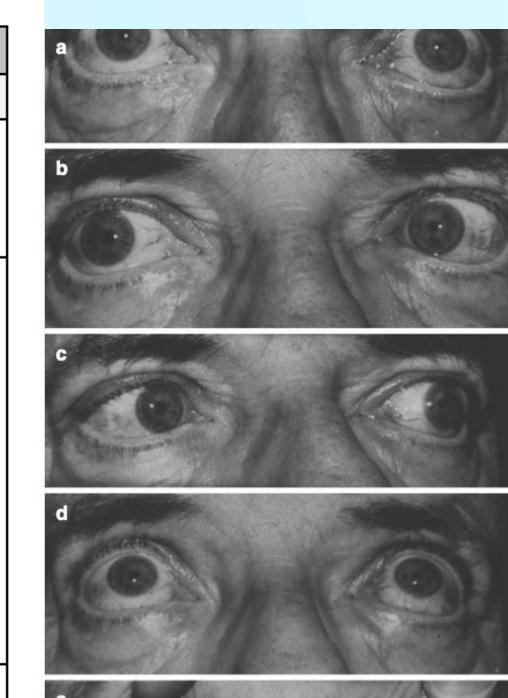
GBS

https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC5535318/figure/F2/


Central,
Pons, Medulla, Spinal cord

Nerve Roots
DRG

Peripheral Nerves
NMT


Nuscle
Specific condition

Cranial Nerves

Table 3.7.1 Clinical subtypes of Guillain-Barré syndrome							
	AIDP	AMAN	AMSAN	MFS	FDP		
Frequency Distribution	Frequent in western countries	Rare	Rare	Rare	Rare		
Symptoms	Progressive para- /tetraparesis Sensory deficits Weak or absent reflexes	Progressive para- /tetraparesis No sensory deficits Weak or absent reflexes	Often severe tetraparesis Severe sensory deficits Absent or reduced reflexes	Ophthalmoplegia Areflexia Ataxia	Absent or only minor motor deficit		
Cranial nerve deficits	Frequent	Occasionally, but less frequent than in AIDP	Present	Specific pattern with absent eye movements, anisokoria, etc.	Bilateral facial weakness		
Autoantibodies	None specific	GM1 IgG GD1a IgG	GM1 IgG GD1a IgG	GQ1b IgG			

AIDP, acute inflammatory demyelinating polyneuropathy; AMAN, acute motor axonal neuropathy; AMSAN, acute motor-sensory axonal neuropathy; FDP, facial diplegia with paresthesias; GD1a/GM1/GQ1b, gangliosides; IgG, immunoglobulin; MFS, Miller Fisher syndrome

Fig. 12.15 Miller Fisher syndrome. (a) Patient with Miller Fisher syndrome and ophthalmoparesis with (b, c) restricted horizontal gaze, and (d, e) reduced upward and downward gaze

Zifko et al

Lehmann et al, 2023

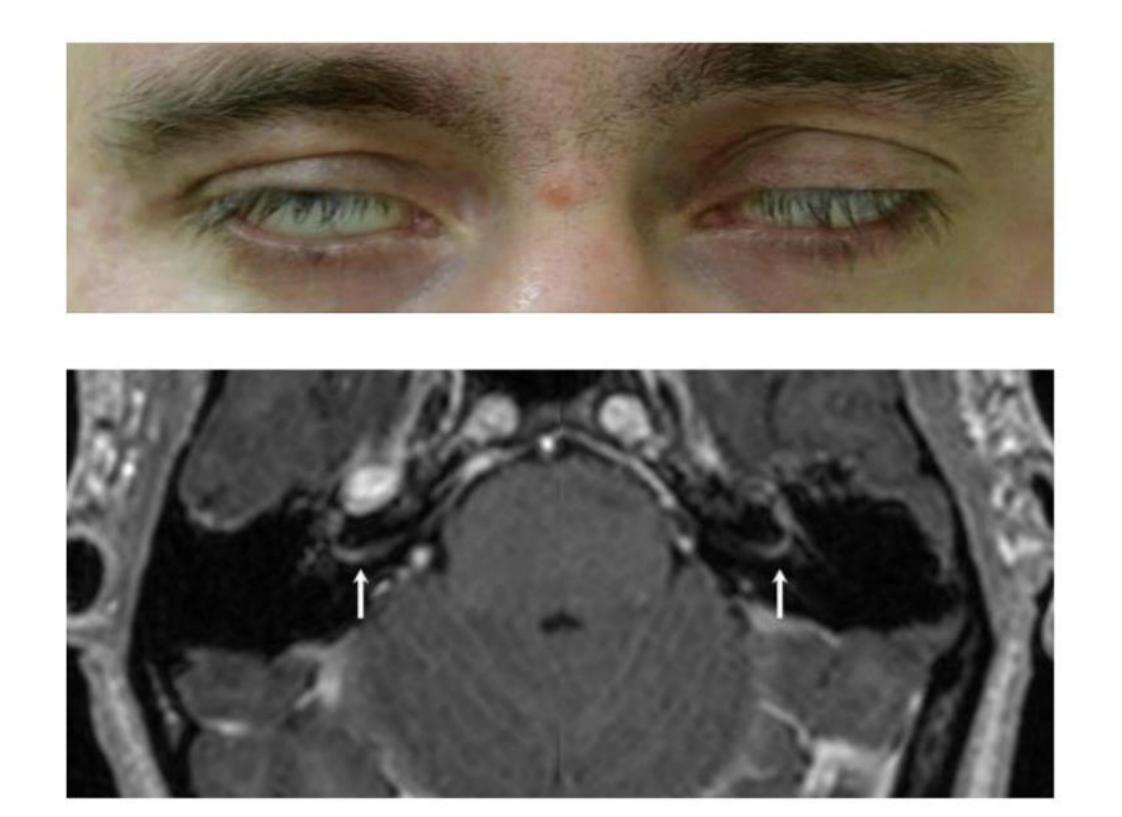


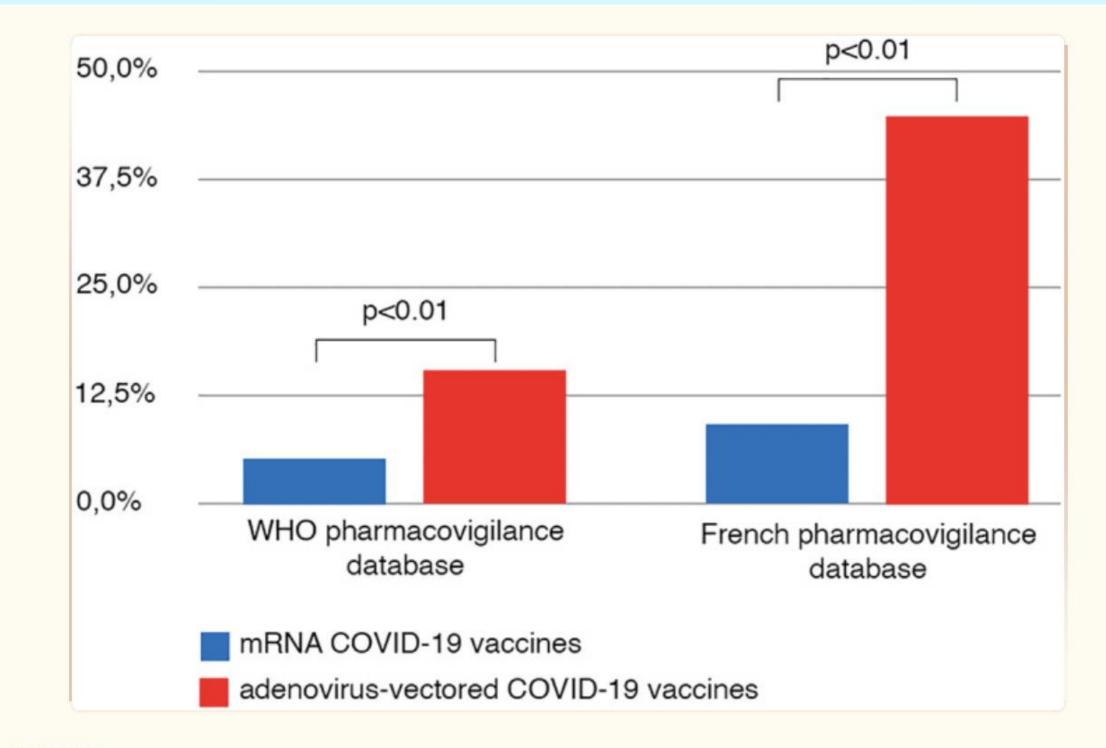
Fig 3.7.3 A. Bilateral Bell's palsy with inability for complete eyelid closure (bilateral lagophtalmus). B. After intravenous gadolinium administration, bilateral strong enhancement of the facial nerve in its extra- and intracanalicular segments is visible (white arrows), axial T1-weighted gradient echo sequence (reproduced with permission from [33]).

Lehmann et al, 2023

Nerve Roots DRG

Peripheral Nerves

NMT


Muscle

Specific condition

GBS and **CN** VII

after

Covid vaccination

Ann Neurol. 2022 Jan; 91(1): 162-163.

Published online 2021 Nov 12. doi: 10.1002/ana.26258

PMCID: PMC8652690 PMID: 34699065

Adenovirus COVID-19 Vaccines and Guillain–Barré Syndrome with Facial Paralysis

FIGURE 1

Frequency of facial paralysis associated with Guillain–Barré syndrome after COVID-19 vaccine administration. WHO = World Health Organization. [Color figure can be viewed at www.annalsofneurology.org]

Among the 48,907 cases reported with COVID-19vaccines, there were 69 (0.1%) cases of GBS, of which 23 involved FP (33.3%).

This included 2 of 22(9.1%) GBS patients who received mRNA vaccines (Pfizer–BioNTech) and 21 of 47 (44.7%) who received adenovirus-vectored vaccines (20/44 [45.5%] Oxford–AstraZeneca, 1/3 [33.3%] Johnson & Johnson), also indicating a higher frequency of FP-GBS occurring after adenovirus-vectored vaccines (Fisher exact test:p = 0.0053; see Fig 1).

Nerve Roots DRG

Peripheral Nerves

NMT

Muscle

Specific condition

World Health Organization (WHO) pharmacovigilance database, VigiBase:

1,257,497 cases reported with COVID-19 vaccines, 1,256 (0.1%) "acute polyneuropathies" (all cases corresponded and 119 elsewhere).

0,09 %

Ann Neurol. 2022 Jan; 91(1): 162-163.

Published online 2021 Nov 12. doi: 10.1002/ana.26258

PMCID: PMC8652690 PMID: 34699065

Adenovirus COVID-19 Vaccines and

Guillain-Barré Syndrome with Facial Paralysis

Among the 48,907 cases reported with COVID-19 vaccines, there were 69 (0.1%) cases of GBS, of which 23 involved FP (33.3%). This included 2 of 22 (9.1%) GBS patients who received mRNA vaccines (Pfizer–BioNTech) and 21 of 47 (44.7%) who received adenovirus-vectored vaccines (20/44 [45.5%] Oxford–AstraZeneca, 1/3 [33.3%] Johnson & Johnson), also indicating a higher frequency of FP-GBS occurring after adenovirus-vectored vaccines (Fisher exact test: p = 0.0053; see Fig 1).

https://who-umc.org/vigibase/

Central, Pons, Medulla, Spinal cord	Nerve Roots DRG	Peripheral Nerves	NMT	Muscle	Specific condition
---	--------------------	-------------------	-----	--------	--------------------

CDC D:tt-"-T:-|-

8 Patientin mit Guillain-Barré-Syndrom

Erkrankung	Wegweisende Befunde
Transverse Myelitis	Gestörte Blasen- und Mastdarmfunktion, gesteigerte MER, Babinski-Reflex positiv
Myelopathie	Gestörte Blasen- und Mastdarmfunktion, gesteigerte MER, Babinski-Reflex positiv
Tetanus	Muskelkrämpfe, Spastik, Trismus
Rabies	Zentralnervöse Symptome, Affektstörungen (Angst), Orientierungs- und Vigilanzstörungen
Neuroborreliose	Reißende Schmerzen, Erythema migrans, pluriradiku- läre Verteilung
Critical illness Neuro- pathie	Eher axonale Schädigung in der NLG/EMG-Untersuchung
Myasthenia gravis	Doppelbilder, tageszeitabhängige Fluktuation
Myopathien/-myositi- den	Eher proximal betonte Schwäche, massive CK-Erhöhung
Psychogene Lähmung	Diskrepanz zwischen Schwere der Erkrankung und Be sorgtheit (»belle indifference«), normal erhältliche Muskeleigenreflexe
Exazerbation einer länger bestehenden Polyneuropathie	Muskelhypotrophie

Tab. 8.3:
Differenzialdiagnose
des GBS mit wegweisenden klinischen
Befunden

Transverse myelitis

Myelopathy

Tetanus Cramps, trismus

Rabies CNS

Lyme (?)

CIP

MG

Myopathy proximal weakness, CK elevation

Psychogenic

Exacerbation of a preexisting neuropathy

Central, **Nerve Roots** Muscle Specific condition Pons, Medulla, Spinal Peripheral Nerves **NMT** DRG cord Ganglionitis SSN Sjögren Idiopathic d Nitrous oxide Fig. 12.28 Paraneoplastic ganglionopathy. (a-c) Dorsal root ganglion phoma cells (arrows) of a Burkitt-like lymphoma. This patient had Posterior collumn (DRG) pathology. (a, b) Examples of an inflammatory paraneoplastic additional meningeal infiltration. (d) Paraneoplastic ganglionopathy in a patient with small cell lung cancer. Chest CT shows enlargement of ganglionitis (arrows). (b) An infiltrate that is immunostained for T-cells degeneration

(arrow). (c) Rare example of neoplastic infiltration of a DRG by lymthe mediastinal lymph nodes
Feldman et al

Image: Widdicombe, 77

	Central,	
Pons,	Medulla,	Spinal
	cord	

Nerve Roots DRG

Peripheral Nerves

NMT

Muscle

Specific condition

Acute Neuropathies

Porphyria

Diphtheria

POEMS Syndrome

Organophosphates (in stages)

Infections

Toxic

ICUAW

Vasculitis often asymmetric

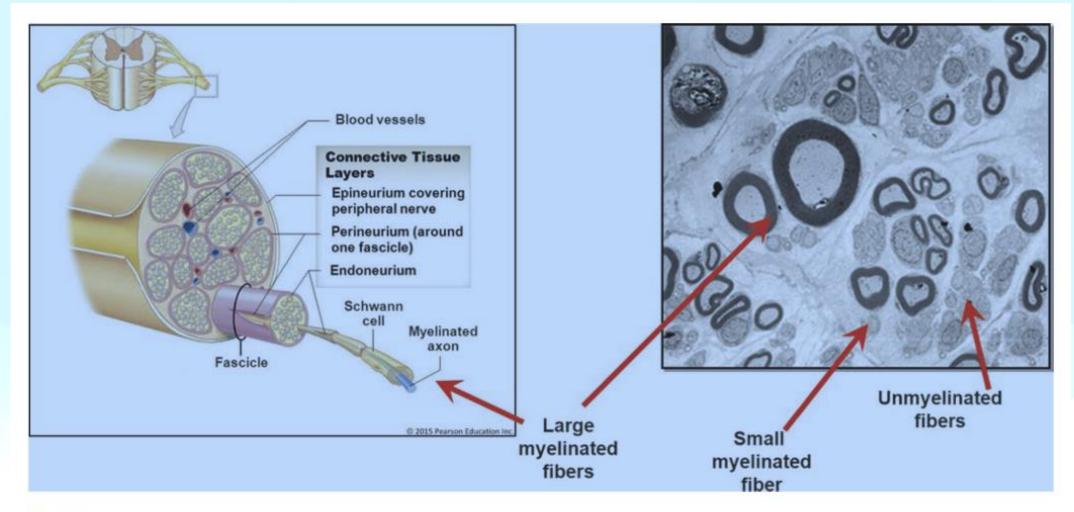
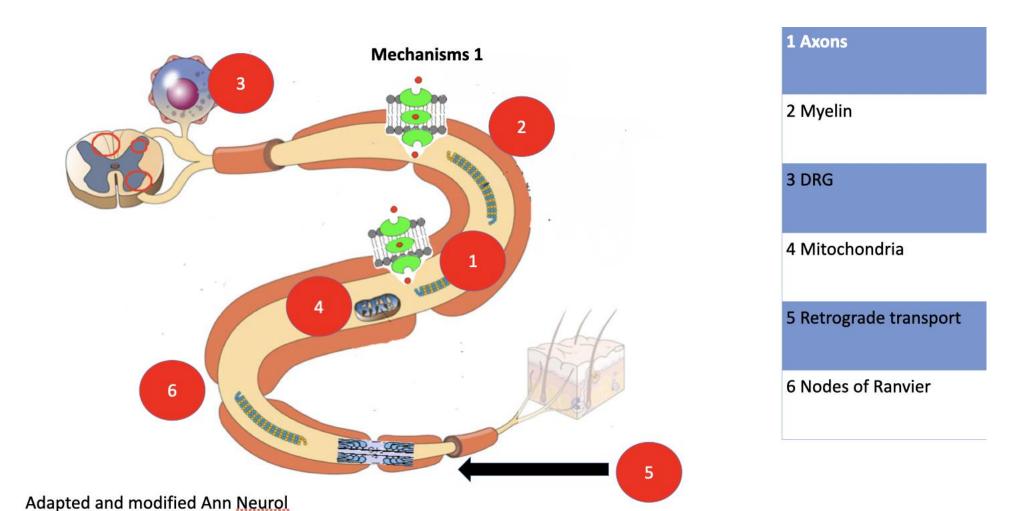
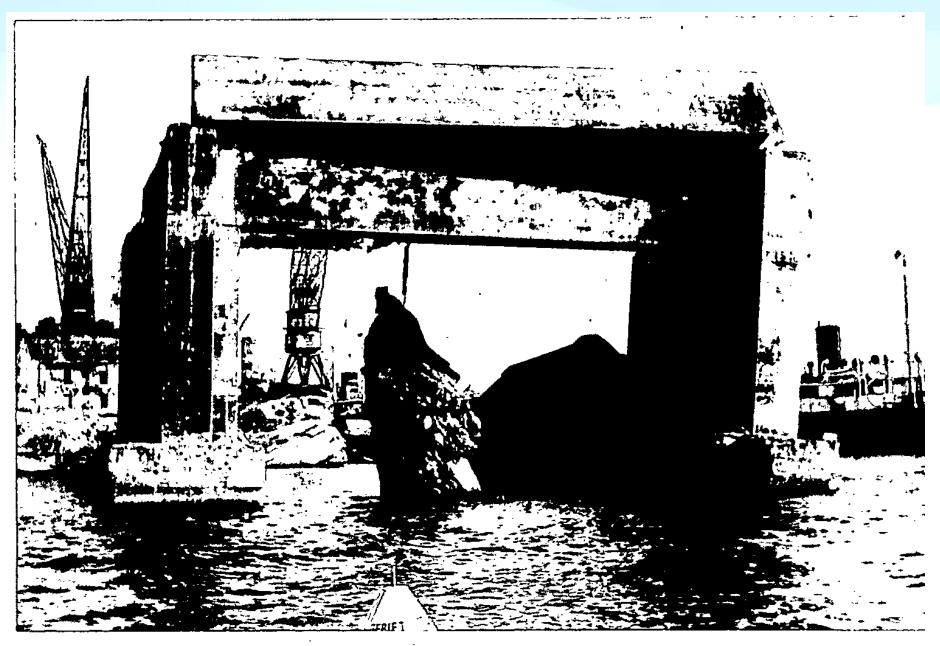



Fig. 12.1 Cross-section diagram (left) and electron micrograph (right) of a nerve fiber showing large and small fibers. Left panel reprinted from Surgery (Oxford), Volume 37, Issue 5, Nicholls and Furness,

Orthopaedics-III: upper limb/Peripheral nerve compression syndromes of the upper limb, Pages 288-293, Copyright (2019), with permission


Central, Pons, Medulla, Spinal cord	Nerve Roots DRG	Peripheral Nerves	NMT	Muscle	Specific condition
---	--------------------	-------------------	-----	--------	--------------------

Acute Neuropathies

Organophosphates (Stages)

The case of TCE (triorthocresyl)- or U- boat (submarine or torpedo) oil

- Used as lubricant
- Ginger jake paralysis (US 1930)
- Used as oiler cooking (Switzerland,
- Germany) or transport of oil in
- contaminated jars.
- Self propagating, disabling, spinal involvement

Gesprengter U-Boot-Bunker in Kiel 1945: "Keine kriegseigentümliche Gefahr"

Central, Pons, Medulla, Spinal cord	Nerve Roots DRG	Peripheral Nerves	NMT	Muscle	Specific condition	
---	--------------------	-------------------	-----	--------	--------------------	--

Acute Neu

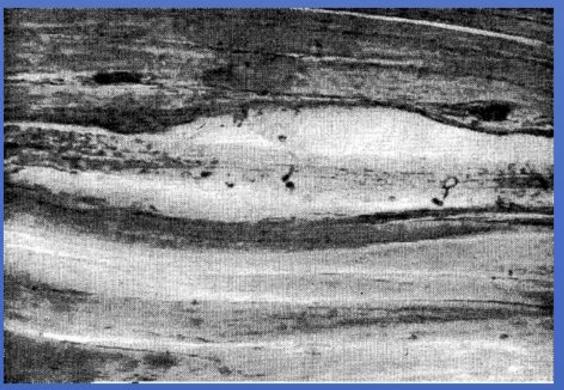
TRI-ORTHO-CRESYL PHOSPHATE (T.O.C.P.)

	Intermediate syndrome	Delayed neuropathy
Time of onset	1- 4 days	2- 3 weeks
Site of weakness		
Limb	Proximal	Distal
Neck	+	-
Cranial nerves	+	-
Respiratory muscles	+	-
EMG	Tetanic fade	Denervation
Recovery	4- 18 days	6 – 12 months
Agents	Fenthion Dimethoate Monocrotophos	Metamidophos Trichrolophon Leptophos

Courtesy: Faouzi Belahsen, mod . NEJM, 316, 761 (1987)

Nerve Roots DRG

Peripheral Nerves


NMT

Muscle

Specific condition

Acute No

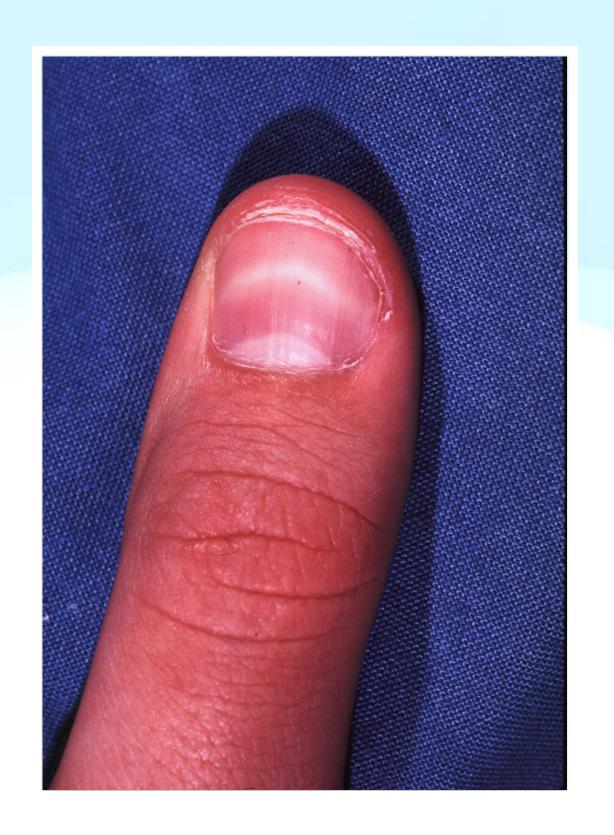
Courtesy: Faouzi Belahsen

2020 PNS Virtual Event

Central, Pons, Medulla, Spinal cord	Nerve Roots DRG	Peripheral Nerves	NMT	Muscle	Specific condition	
---	--------------------	-------------------	-----	--------	--------------------	--

Acute Neuropathias

Major outbreaks of TOCP poisoning


Years	Place	No of cases	Vehicles of TOCP
1898-1900	France	6	Phospho-creosote6
1900-28	Europe	43	Phospho-creosote7
1930-1	USA	30-50 000	Ginger extract ⁸
1930-5	Europe	hundreds	Apiol(abortifacient)4
1938	Durban-1	68	Cooking oil ¹¹
1940	Basel (Switzerland)	80	Cooking oil ¹⁰
1940-6	Germany	hundreds	Cooking oil ²
1942-3	Verona (Italy)	41	Ground contamination (this study)
1945	Liverpool (United Kingdom)		Cooking oil ¹²
1955	Durban-2	11	Contaminated water ¹³
1956	Japan	6	Cooking oil ¹⁴
1959	Morocco	10 000	Cooking oil ¹⁸
1960	Bombay (India)	58	Cooking oil ¹⁹
1962	West Bengal	400	Contaminated flour ¹⁶
1966	Romania	12	Liquor ⁹
1967	Fiji	56	Contaminated flour ¹⁷
1971-2	Vietnam	15-20	Cooking oil ²⁰
1977-8	Sri Lanka	20	Sesame oil ¹⁵

Central, Pons, Medulla, Spinal cord	Nerve Roots DRG	Peripheral Nerves	NMT	Muscle	Specific condition
---	--------------------	--------------------------	-----	--------	--------------------

Acute Neuropathies

Arsenic

- Acute: sensory, may resemble GBS (also coasting)
- Chronic
- Occupational
- Groundwater contamination (eg Bangladesh)
- Contamination of liquor

From EL Feldman et al Atlas of neuromuscular disease Springer 2014

Central, Pons, Medulla, Spinal cord	Nerve Roots DRG	Peripheral Nerves	NMT	Muscle	Specific condition
---	--------------------	-------------------	-----	--------	--------------------

Acute Neuropathies

- The Spanish Toxic Oil Syndrome 20 Years after Its
 Onset: A Multidisciplinary
- Review of Scientific Knowledge
- •Emilio Gelpí, et al, Environ Health
- •Perspect 110:457–464 (2002).

Figure 1. Structural formulas of derivatives of (A) PAP and its esters (B) 0 PAP and (C) 00 PAP.

Nerve Roots DRG

Peripheral Nerves

NMT

Muscle

Specific condition

Jelly fish (Cnidarian peptide) (2000 types)

- Sensory symptoms
- Transient focal neuropathy of the motor and sensory nerves of the tongue and pharynx after swallowing water contaminated
- Isolated mononeuropathie also multiplex
- GBS
- Vasospasm- compartment syndrome

Vascular
Direct toxic

n channels

euronal excitability
nmune mediated

Biological toxins

- Porcine aerosol
- Marine toxins
- Ciguatoxin
- Tetrodoxin
- Jellyfish
- Shell fish
- Brevetoxin, saxitoxin
- Multiple: venoms (snakes, spiders)

2020 PNS Virtual Event

Central, Pons, Medulla, Spinal cord	Nerve Roots DRG	Peripheral Nerves	NMT	Muscle	Specific condition
---	--------------------	-------------------	-----	--------	--------------------

Associations with other infections

HIV

Clinical syndromes: Occur in specific phases of infection

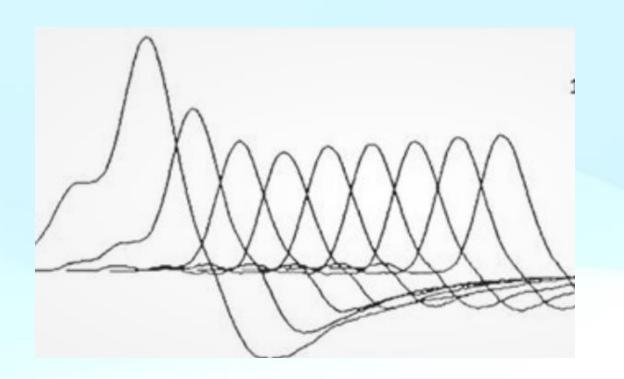
Early: Usually immune mediated ALS-variant syndrome Brachial plexopathy CIDP

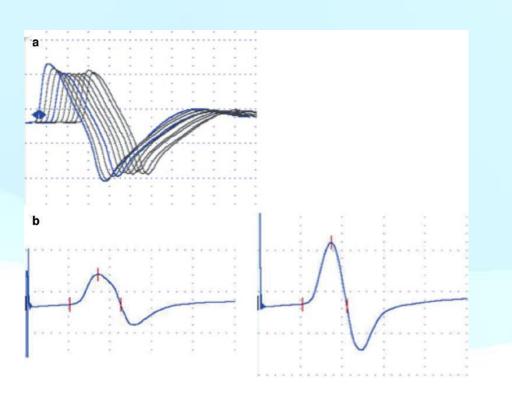
Guillain-Barré

Mononeuritis multiplex (Vasculitis) Myasthenia gravis Neuromyotonia Immune myopathy Cytoplasmic body (Rod) myopath Hepatitis C
West Nile: neuropathy, myopathy,
poliomyelitis
African tick bite fever
Dengue fever (acute neuropathy)
ZIKA
Covid SARS?

Nerve Roots DRG

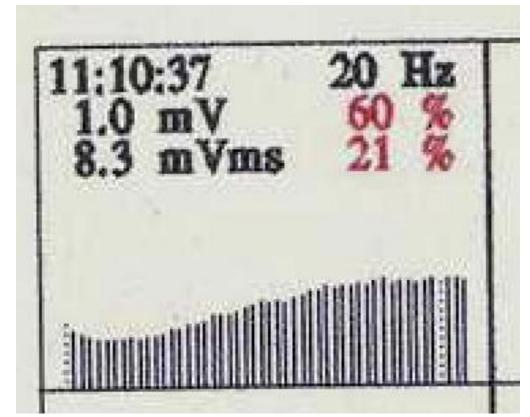
Peripheral Nerves


NMT


Muscle

Specific condition

Myasthenia gravis



Botulism

Organophosphates "Nerve gas", eg Sarin

One antidote, atropine, blocks acetylcholine receptors, sparing the body's muscles from overstimulation. The other, pralidoxime, or 2-PAM, removes sarin from the enzyme that stops acetylcholine from accumulating, Nelson said. However, both antidotes must be given within about

Image: Widdicombe, 77

Central, Pons, Medulla, Spinal cord	rve Roots DRG Peripheral Nerves	NMT	Muscle	Specific condition
---	---------------------------------------	-----	--------	--------------------

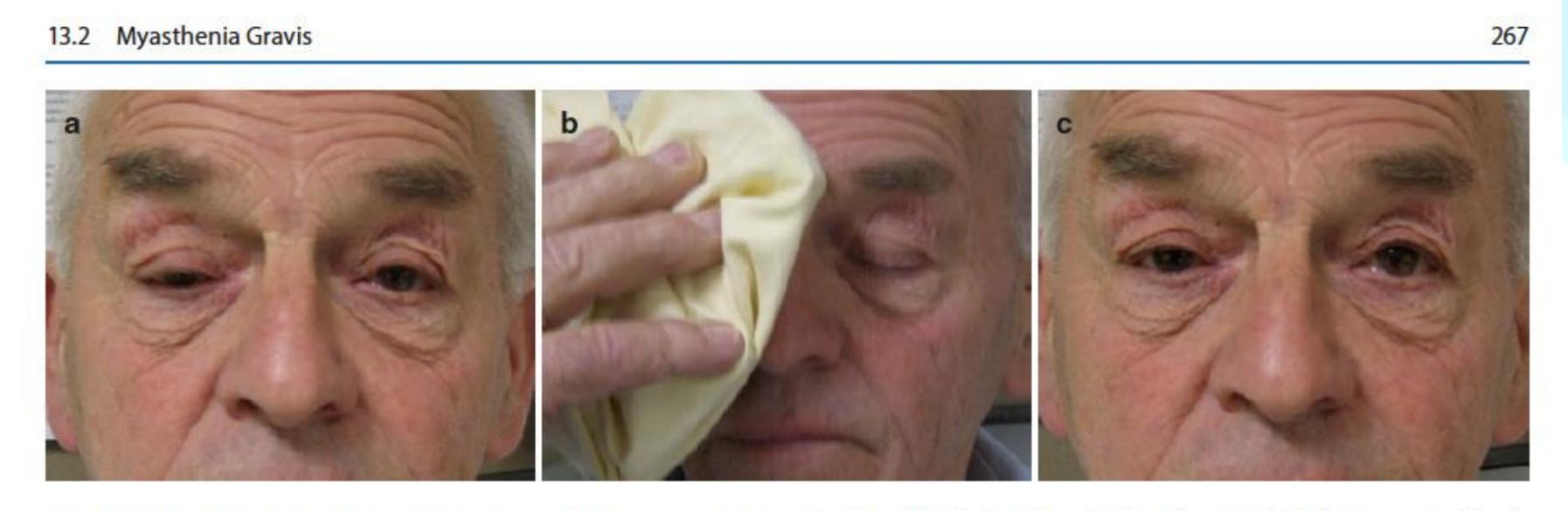


Fig. 13.6 Ice (pack) test. The ice pack test is a useful bedside test. (a) Patient with ptosis on the right. (b) A pack with ice is applied to one eye, usually 2 min is suggested. (c) Positive test with remission of pto-

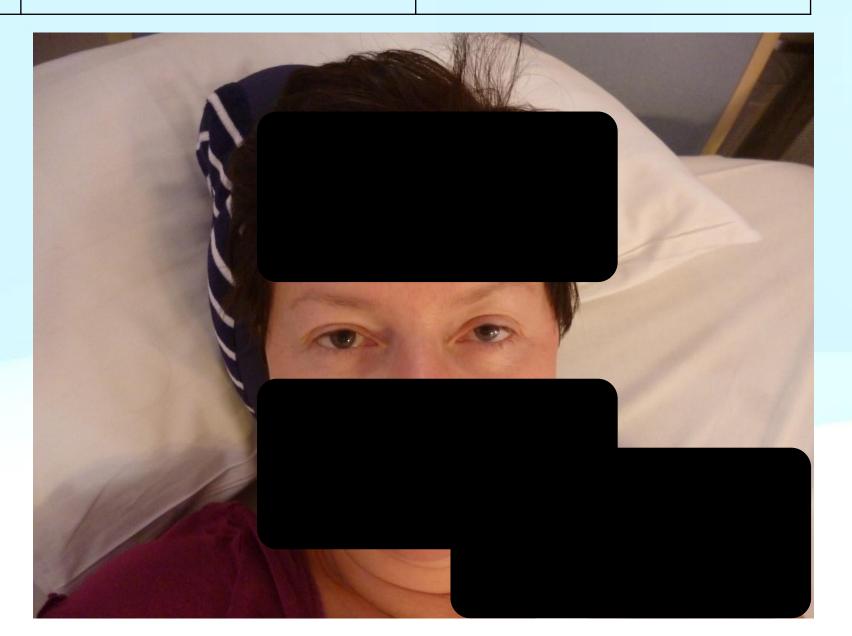
sis. The effect is based on the fact that acetylcholinesterase activity is inhibited below 29 degrees Celsius

Feldman et al

Nerve Roots DRG

Peripheral Nerves

NMT

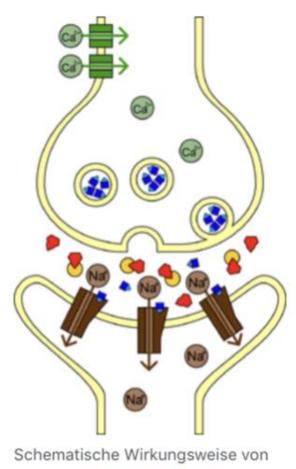

Muscle

Specific condition

Botulism

- Early symptoms
 - Dysphagia Dry mouth , slurred speech
 - Vision blurred , diploma
 - Speech: Slurred; Difficult; Hoarse voice
 - Nausea, vomitting, constipation
 - Nausea & vomiting: More with food bourne botulism
 - Constipation: Childhood botulism
- Weakness
 - CN: Ptosis, EO muscles
 - Dyphagia, dysarthria
 - Diffuse weakness
 - Usually symmetric
 - Proximal > Distal
 - "Descending paralysis"
 - Respiratory
- Sensory loss: Never prominent
- Tendon reflexes
 - Reduced
- Autonomic: pupils, heart, hypotension
- hyperhydrosis, urinary retention

One antidote, atropine, blocks acetylcholine receptors, sparing the body's muscles from overstimulation. The other, pralidoxime, or 2-PAM, removes sarin from the enzyme that stops acetylcholine from accumulating, Nelson said. However, both antidotes must be given within about 10 minutes of exposure in order to be effective, he said.


Central, Pons, Medulla, Spinal cord	Nerve Roots DRG	Peripheral Nerves	NMT	Muscle	Specific condition
---	--------------------	-------------------	-----	--------	--------------------

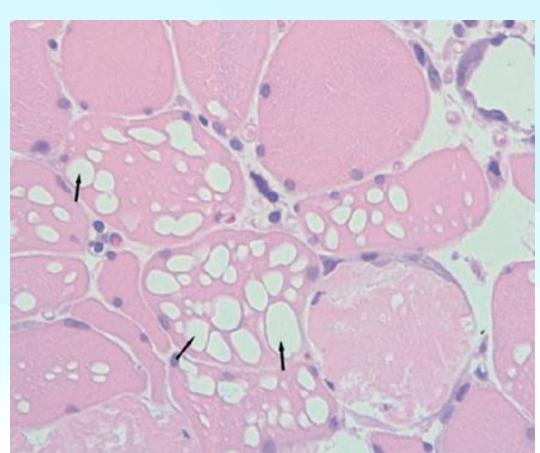
Organophosphates "Nervengas", eg Sarin

Warfare agents

- History: spear venoms
- Sarin and others
- Aerosols and skin!
- Tokyo incident

Sarin am synaptischen Spalt.
Sarin (rot), Acetylcholinesterase
(gelb), Acetylcholin (blau)

2020 PNS Virtual Event



Central, Pons, Medulla, Spinal cord	Nerve Roots DRG	Peripheral Nerves	NMT	Muscle	Specific condition
---	--------------------	-------------------	-----	--------	--------------------

Myopathy

Inflammatory myopathies
Necrotizing myopathy
Rhabdomyolysis
Periodic Paralysis
Electrolyte Disorders, hypercalcemia, hypocalcemia
Myosin deficiency (Critical illness myopathy)
Carnitine Deficiency

Neuromuscular Blockade

Central,
Pons, Medulla, Spinal cord

Nerve Roots
DRG

Peripheral Nerves
NMT

Muscle
Specific condition

Median nerve

DML: 4.4 ms

MCV: 38 - 36 m/s

CMAP: 4.1 - 1.3 - 1.2 mV

2 mV

proximal compound muscle action potentials (CMAPs) were recorded in the forearm segments of the median and ulnar nerves. Motor conduction velocities (MCVs) were also reduced (Normal. >50 m/s in the median and

Hypokalemic Periodic Paralysis

Electrodiagnostic

- ° EMG
 - Between attacks: Normal
 - During attacks: Irritability or Reduced insertional activity
- ° CMAP amplitude
 - Reduced during attacks
 - Increased immediately after sustained (5 min) maximal contraction
 - Progressively reduced (by 40%) during rest 20 to 40 min after initial increment (80% of patients)
 - Normals: Mild increase in CMAP amplitude after exercise
 - Epinephrine: Reduces size of CMAP

Hereditary

Ulnar nerve

DML: 3.8 ms

MCV: 29-39 m/s

CMAP: 0.8 - 0.6 - 0.5 mV

0.5 mV

Ca⁺⁺ channel: CACNA1S; 1q32 Na⁺ channel: SCN4A; 17q23 Gitelman: SLC12A3; 16q13

K⁺ channel

KCNE3: 11q13 KCNJ2: 17q24 KCNJ5: 11q24

Renal tubular acidosis: SLC4A1; 17q21

Gossypol myopathy

<u>HOPP + CNS</u>: ATP1A2; 1q23

Thyrotoxic (TTPP)

<u>1</u>: CACNA1S; 1q32

2: KCNJ18; 17p11

<u>3</u>: 17q24.3

Acquired

K⁺ wasting

Dengue fever

https://neuromuscular.wustl.edu/mother/myotox.htm

Ca⁺⁺ Channe

n . /000/

Central, Pons, Medulla, Spinal cord	rve Roots DRG Peripheral Nerves	NMT	Muscle	Specific condition	
---	---------------------------------	-----	--------	--------------------	--

Hypokalemic Paralysis

Barium myopathy (Hypokalemic)

Toxicology

Toxin: Soluble salts; Acetate, Carbonate, Chloride, Hydroxide, Nitrate, Sulfide Doses (Oral): Toxic 200 mg; Lethal 1 to 15 g Exposure

Oral: Suicide; Food contamination (Table salt, Flour, Potato meal substitution Inhalation

Burns: Molten barium chloride

Clinical

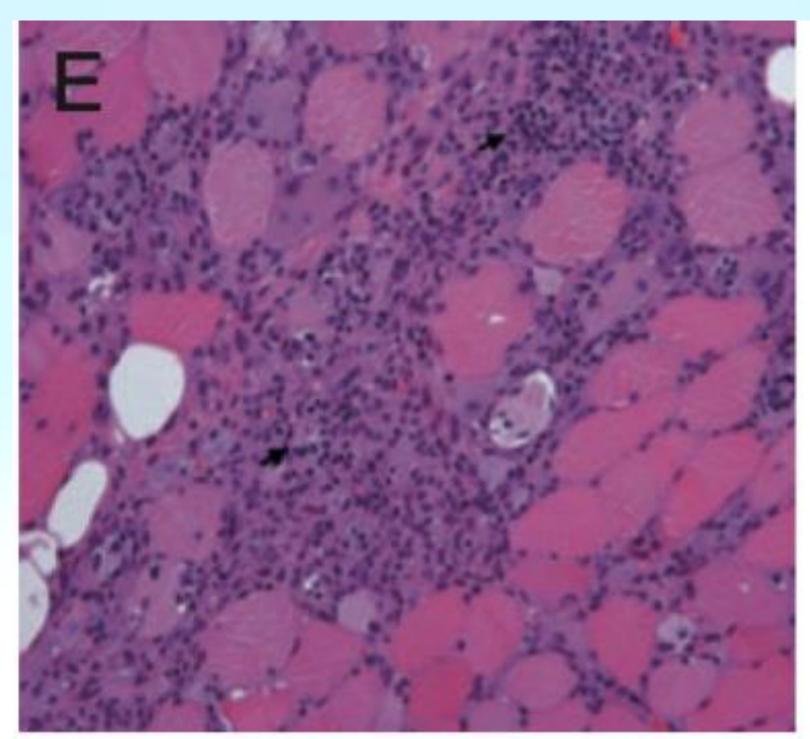
Acute toxicity

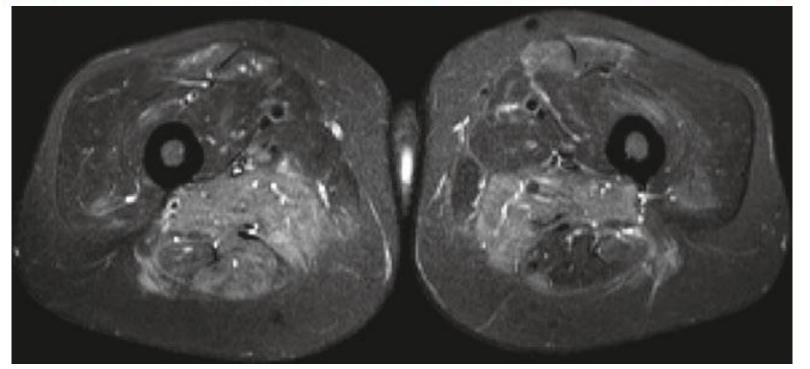
GI: Nausea; Vomiting; Diarrhea; Abdominal pain; Xerostomia

Perioral paresthesias (Occasional) Weakness

Quadriparesis: Flaccid

Muscle twitching


No involvement of cranial nerves or respiration Reflexes: Often absent: May be preserved Rhabdomyolysis: Occasional https://neuromuscular.wustl.edu/mother/myotox.htm


Central, Pons, Medulla, Spinal cord	Nerve Roots DRG	Peripheral Nerves	NMT	Muscle	Specific condition
---	--------------------	-------------------	-----	--------	--------------------

Myopathy

Inflammatory myopathies

Necrotizing myopathy
Immune mediated
Toxic myopathies

Case: Poliomyositis in remission.
Swallowing difficulties
Pseudosclerodermiform stenosis

Central, Pons, Medulla, Spinal cord	Nerve Roots DRG
Myopathy	
Inflammatory m	yopathies

https://neuromuscular.wustl.edu/mother/myotox.htm

Peripheral Nerves

NMT

Muscle

Specific condition

SPECIFIC IMMUNE OR INFLAMMATORY MYOPATHIES

<u>Immune myopathies (Polymyositis +...)</u> <u>IM-VAMP</u>

General aspects Clinical

Laboratory

Subtypes & Comparative features Brachio-Cervical Inflammatory (BCIM)

Collagen vascular disease

Complement: C2 deficiency

Drug-induced Graft-vs-host disease

HMGCR (200/100) antibody

Idiopathic

IMPP

MAS antibody Nup antibody

Perimysial pathology (IMPP)

<u>Jo-1</u>

t-RNA synthetase antibodies

PM + Mitochondrial (PM/COX-)

Regional ischemic (RIIM)

Sarcoidosis

Signal recognition particle Ab (SRP)

Systemic disorders & Myositis

U1-snRNP antibodies

Dermatomyopathies

Childhood (Juvenile) Adult

Drug-induced

Malignancy-associated

p155 (TIF-γ) Ab

Regional ischemic (RIIM)

MDA-5 antibody

PM-Scl antibody +

Amyopathic Mi-2 antibody +

Perimysial pathology (IMPP)

EJ antibody Jo-1 antibody

<u>Inclusion body myositis</u> (IBM)

IM-Mito (PM/COX-)

Other "Immune Myopathies"

Benign acute childhood myositis Celiac disease

Chondroitin sulfate C deficient

Decorin antibody (BJ) myopathy

Eosinophilia myalgia syndrome

Fasciitis

Focal myositis

Quadriceps; Other

TRAPS

Granulomatous

Hemophagocytic lymphohistiocytosis

Hereditary

IM + abundant Macrophages

Infection

<u>Influenza</u> Lyme myositis

Macrophagic myofasciitis

Masticator myopathy

Mitochondrial antibody

Multinodular polymyositis

Myasthenia gravis

Brachio-Cervial Inflammatory (BCIM)

Myositis

Lymphorrhages

Necrosis, Abundant

with Encephalopathy

Regional Ischemic Immune (RIIM)

with Pipestem capillaries

SRP antibodies

Neonatal perifascicular myopathy

Orbital

Perimyositis

Polymyalgia Rheumatica

Pyomyositis <u>Sarcocystis</u>

Sarcoidosis **Toxoplasmosis**

Trichinellosis (Trichinosis)

PATHOLOGIC CLASSIFICATION 68

Perimysial pathology (IMPP)

Feature: Connective tissue pathology

Aldolase high

Dermatomyopathy with IMPP

Amyopathic (MDA5 Ab)

Fasciitis

Focal myositis

Graft-vs-host disease

t-RNA synthetase antibodies: Jo-1

IMPP + Necrosis

HMGCR (200/100) antibody

Myovasculopathies

Feature: Damage to large or small vessels

Dermatomyositis with Vascular Pathology

(DM-VP; Childhood Dermatomyositis)

Regional Ischemic (RIIM; Paraneoplastic) Pipestem capillaries

Immune Polymyopathies

Features: Necrosis; Little inflammation **SRP** antibody: Scattered necrosis

IM + Endomysial Pathology (IM-EP)

Features: C_{5b9} deposits; Glycoprotein Δ

Brachio-Cervical Inflammatory (BCIM)

Chondroitin sulfate C deficient

Decorin antibody (BJ) myopathy

Histiocytic Myopathies

Histiocytic cells: Foci or Predominant

Granulomatous

Mitochondrial antibody

Sarcoid

Hemophagocytic lymphohistiocytosis

IM + Abundant Macrophages (IMAM)

IRIS

Macrophagic myofasciitis

IM-VAMP syndromes

Features: Foci of T-cells but not B-cells Vacuoles, Aggregates or Mito Path No response to immunomodulation <u>Inclusion body myositis</u>

IM + Mitochondrial Pathology

Central, Pons, Medulla, Spinal cord	Nerve Roots DRG	Peripheral Nerves	NMT	Muscle	Specific condition
---	--------------------	-------------------	-----	--------	--------------------

Myopathy

Inflammatory myopathies

Arq Neuropsiquiatr. 2022 May; 80(5 Suppl 1): 238–248.

Published online 2022 Aug 12. doi: 10.1590/0004-282X-ANP-2022-S131

Inflammatory myopathies: an update for neurologists

André Macedo Serafim Silva, ¹ Eliene Dutra Campos, ¹ and Edmar Zanoteli ¹

Table 2.

Classification e key characteristics of the IIM subtypes.

- Inflammatory myopathy accompanied by skin changes. Some patients may have amyopathic or hypo myopathic presentations - There are five known autoantibodies associated: anti-Mi2, anti-TIF1-y, anti-NXP-2, anti-MDA-5 and anti-SAE - CD4 lymphocytes infiltrates, with a perivascular and interfascicular location and atrophy of the perifascicular fibers
- PM No skin or pulmonary involvement Good response to immunosuppressive treatment No
 association with specific antibodies Now considered an exclusion diagnosis CD8 lymphocytes
 predominate, invading the endomysium and intact fibers
- IMNM Associated with systemic conditions (cancer, statin, viral infections) Presence of autoantibodies: anti-SRP and anti-HMGCR - In children, it may present as slowly progressive, and mimic muscular dystrophy - Abundant fibers in necrosis and macrophage predominance, which can be identified by labeling for CD68
- IBM Slowly evolving weakness with distal atrophy in the hands and atrophy in the thighs Individuals
 over 45 years Association with anti-NT5C1A autoantibody CD8 lymphocytes predominate,
 invading the endomysium and intact fibers and presence of marginated vacuoles
- Inflammatory myopathy, interstitial lung disease and joint involvement Other findings: fever,
 "mechanic's hands" and Raynaud's phenomenon All the patients have antibodies directed against
 aminoacyl-tRNA synthetases The most common autoantibodies are anti-Jo-1, anti-PL-7, and
 anti-PL-12 The muscle biopsy demonstrates T-cell and macrophage infiltrations and
 perifascicular atrophy and necrosis
- Association of inflammatory myopathy with other connective tissue disorder The most common antibodies are anti-PM /Scl and anti-U1-RNP - Perivascular inflammation, perifascicular necrosis and MHC-I increase

Open in a separate window

DM: dermatomyositis; PM: polymyositis'; IMNM: immune-mediated necrotizing myopathy; IBM: inclusion body myositis; ASS: antisynthetase syndrome; OM: overlap myositis.

Central, Pons, Medulla, Spinal cord Nerve Roots DRG Peripheral Ne	ves NMT	Muscle	Specific condition
--	---------	--------	--------------------

Toxic Myopathy

e-Aminocaproic acid	<u>Daptomycin</u>	<u>Penicillamine</u>
<u>Amiodarone</u>	20,25-Diazacholesterol	Pentaborane Pentaborane
<u>Apamin</u>	<u>Emetine</u>	<u>Procainamide</u>
Arsenic trioxide	Ethanol	Propofol Propofol
<u>AZT</u>	<u>Fibrates</u>	<u>5-α Reductase</u>
<u>Barium</u>	<u>Gemcitabine</u>	<u>Selumetinib</u>
<u>Chlorophenoxy</u>	<u>Germanium</u>	<u>Statins</u>
<u>Chloroquine</u>	Gold	<u>Taipoxin</u>
<u>Ciguatoxin</u>	<u>Gossypol</u>	TNF-α
Clofibrate	Interferon-α	Toxic oil
Colchicine	<u>Ipecac</u>	L-Tryptophan
Corticosteroids	<u>Isotretinoin</u>	<u>Valproate</u>
Crotamine	<u>Lithium</u>	Vecuronium bromide
Crotoxin	<u>Minocycline</u>	Vinca alkaloids
<u>Cyclosporine</u>	Mojave toxin	Zidovudine

Review > QJM. 2018 May 1;111(5):307-311. doi: 10.1093/qjmed/hcy031.

Acute steroid myopathy: a highly overlooked entity

https://neuromuscular.wustl.edu/mother/myotox.htm

	Central,	
Pons,	Medulla,	Spinal
	cord	

Nerve Roots DRG

Peripheral Nerves

NMT

Muscle

Specific condition

Rhabdomyolysis

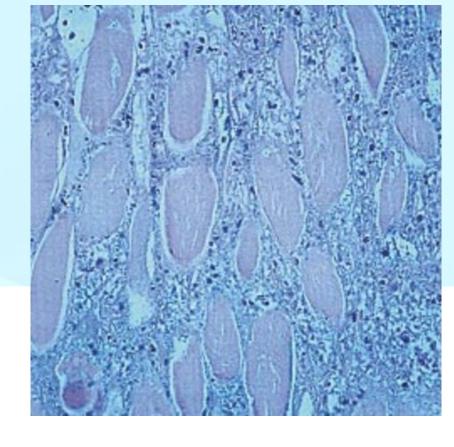
Medications and Toxic Substances That Increase the Risk of Rhabdomyolysis

Direct myotoxicity

HMG-CoA reductase inhibitors, especially in combination with fibrate-derived lipid-lowering agents such as niacin (nicotinic acid; Nicolar)

Cyclosporine (Sandimmune)

Itraconazole (Sporanox)


Erythromycin

Colchicine

Zidovudine (Retrovir)

Corticosteroids

 $HMG-CoA = 3-hydroxy-3-methylglutaryl\ coenzyme\ A;\ LSD = lysergic\ acid\ diethylamide;\ MDMA = 3,4-methylene\ dioxymethamphetamine.$

Indirect muscle damage

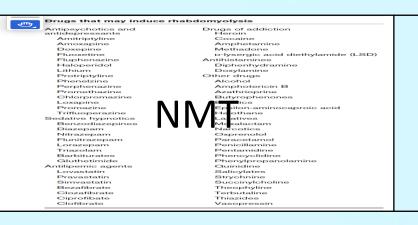
Alcohol

Central nervous system depressants

Cocaine

Amphetamine

Ecstasy (MDMA)


LSD

Neuromuscular blocking agents

Central, Pons, Medulla, Spinal cord

Nerve Roots DRG

Peripheral Nerves

Critical Care 2005, 9:158-169 (DOI 10.1186/cc2978)

Muscle

Specific condition

Rhabdomyolysis

TABLE 3

Infectious, Inflammatory, Metabolic and Endocrinologic Causes of Rhabdomyolysis

Infectious causes

Viruses: influenza virus B, parainfluenza virus, adenovirus, coxsackievirus, echovirus, herpes simplex virus, cytomegalovirus, Epstein-Barr virus, human immunodeficiency virus

Bacteria: Streptococcus, Salmonella, Legionella, Staphyloccus and Listeria species

Inflammatory causes

Polymyositis

Dermatomyositis

Capillary leak syndrome

Snake bites (mostly in South America, Asia and Africa)

Metabolic and endocrinologic causes

Electrolyte imbalances: hyponatremia, hypernatremia, hypokalemia, hypophosphatemia, hypocalcemia

Hypothyroidism

Thyrotoxicosis

Diabetic ketoacidosis

Nonketotic hyperosmolar syndrome

Genetic Causes of Rhabdomyolysis

Lipid metabolism

Carnitine palmitoyltransferase deficiency

Carnitine deficiency

Short-chain and long-chain acyl-coenzyme A dehydrogenase deficiency

Carbohydrate metabolism

Myophosphorylase deficiency (McArdle's disease)

Phosphorylase kinase deficiency

Phosphofructokinase deficiency

Phosphoglycerate mutase deficiency

Lactate dehydrogenase deficiency (characteristic elevation of creatine kinase level with normal lactate dehydrogenase level)

Purine metabolism

Myoadenylate deaminase deficiency

Duchenne's muscular dystrophy

Drugs that may induce rhabdomyolysis

Antipsychotics and Drugs of addiction antidepressants Heroin Amitriptyline Cocaine **Amphetamine Amoxapine** Methadone Doxepine

Fluoxetine D-lysergic acid diethylamide (LSD)

Antihistamines Fluphenazine Haloperidol Diphenhydramine Lithium Doxylamine Other drugs Protriptyline Phenelzine Alcohol

Amphotericin B Perphenazine Promethazine Azathrioprine Chlorpromazine Butyrophenones

Emetics Loxapine

Promazine Epsilon-aminocaproic acid

Halothane Trifluoperazine Sedative hypnotics Laxatives Benzodiazepines Moxalactam Diazepam **Narcotics** Nitrazepam Oxprenolol Flunitrazepam Paracetamol Penicillamine Lorazepam Triazolam Pentamidine **Barbiturates** Phencyclidine Phenylpropanolamine Gluthetimide

Quinidine Antilipemic agents Lovastatin Salicylates Strychnine Pravastatin Succinylcholine Simvastatin Bezafibrate Theophyline Clozafibrate Terbutaline Ciprofibate **Thiazides** Clofibrate Vasopressin

	Central,	
Pons,	Medulla,	Spinal
	cord	

Nerve Roots DRG

Peripheral Nerves

Antipsychotics and antidepresses and antidepress

Muscle

Specific condition

Rhabdomyolysis

Drugs, toxins, and venoms

Ethanol

Recreational drugs and

stimulants

Toxic plants and animals

Pharmaceutical agents

Use of heroin, lysergic acid diethylamide, cocaine, *N*-methyl-D-asparate (ecstasy), phencyclidine, caffeine, aminophyline, pseudoephedrine; sniffing glue

Ingestion of hemlock, toxic mushrooms; effects of blowpipe dart poison, snake venoms, hymenoptera stings, envenomation by giant desert centipede

Use of benzodiazepines, corticosteroids, narcotic analgesics, immunosuppressants, salicylates, lipid-lowering statins, paralytics, antibiotics, antidepressants, antipsychotics, thromobolytics, chemotherapeutic agents

Central, Pons, Medulla, Spinal cord	Nerve Roots DRG	Peripheral Nerves	NMT	Muscle	Specific condition
---	--------------------	-------------------	-----	--------	--------------------

Other Causes

Acute sensory loss

Intensive Care conditions

Musculoskeletal pain

Insulin "Neuritis"

Rabies (paralytic form)

Tetanus

Exacerbation of chronic neuro-

muscular disease

Central, Pons, Medulla, Spinal cord

Nerve Roots DRG

Peripheral Nerves

NMT

Muscle

Specific condition

WELCOME to WFN e-Learning Days

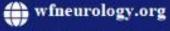
3rd Annual Education in Headache to **Healthcare Providers in Africa (EHHPA)**

Saturday 23rd September 2023

Program in English with two parallel sessions in French

1st WFN-AOAN e-Learning Day 2023

Saturday 18th November 2023 Topic: "Advancing Stroke Care in Asia"


Saturday 2nd December 2023 Topic: "Neuropathies"

Delayed to 02/24

Free Online Registration for all the e-Learning Days

For more information about the WFN activities and how you can get involved:

info@wfneurology.org

Central,
Pons, Medulla, Spinal
cord

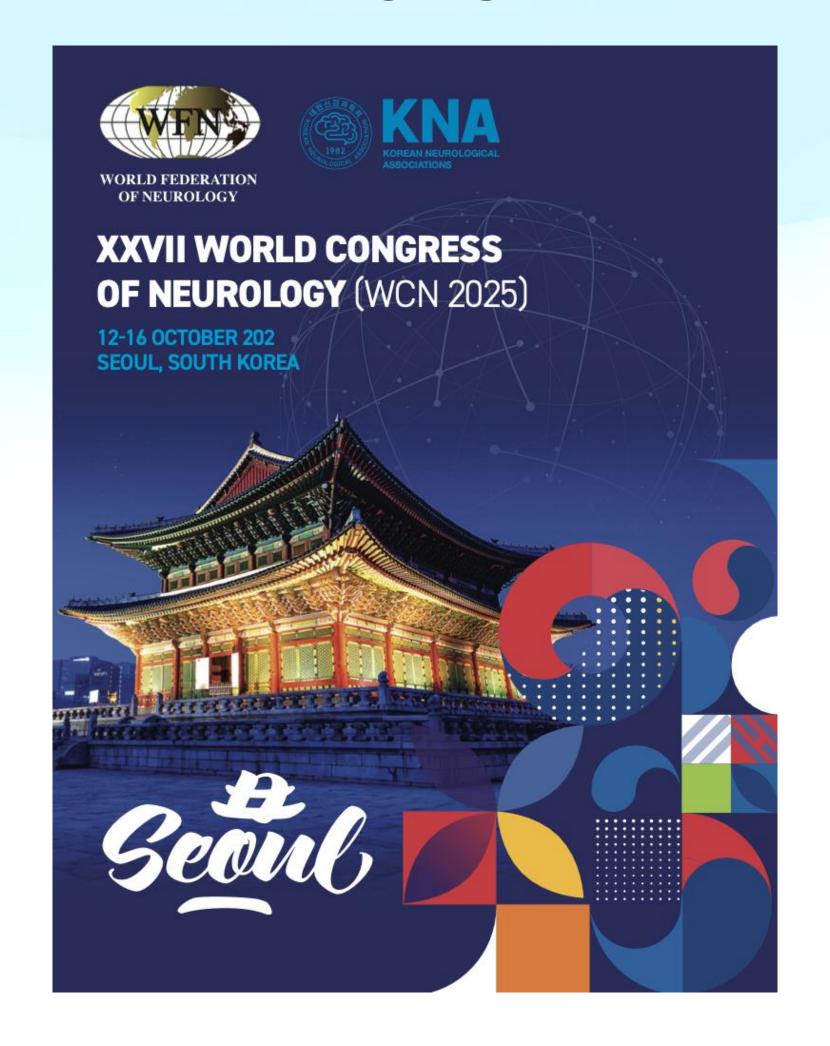
Nerve Roots DRG

Peripheral Nerves

NMT

Muscle

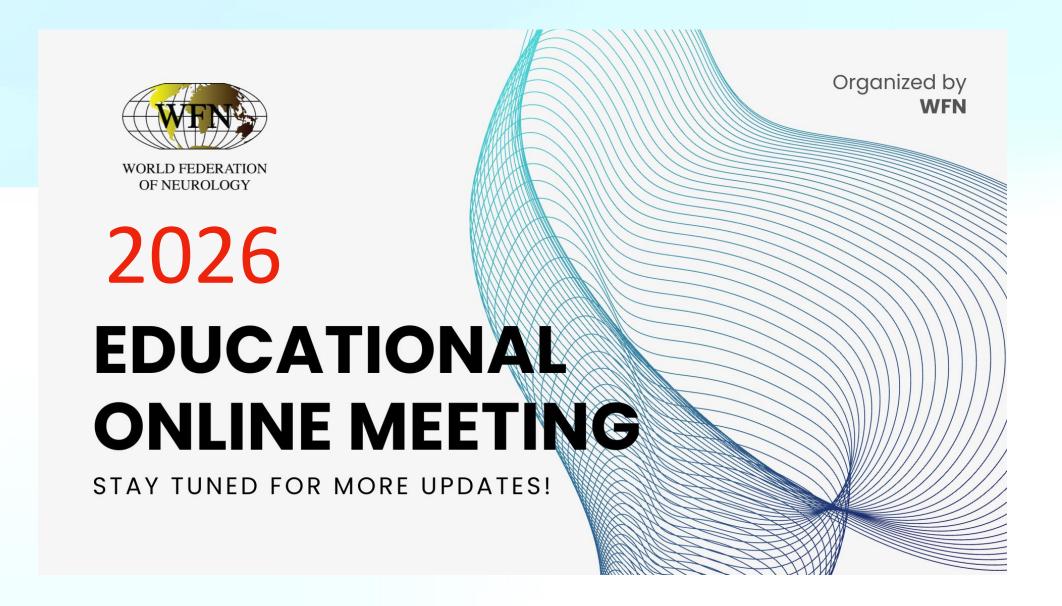
Specific condition


2024

Central, Pons, Medulla, Spinal cord	Nerve Roots DRG	Peripheral Nerves	NMT	Muscle	Specific condition	
---	--------------------	-------------------	-----	--------	--------------------	--

Central,	
Pons, Medulla, Spinal	
cord	

Nerve Roots DRG


Peripheral Nerves

NMT

Muscle

Specific condition

2026

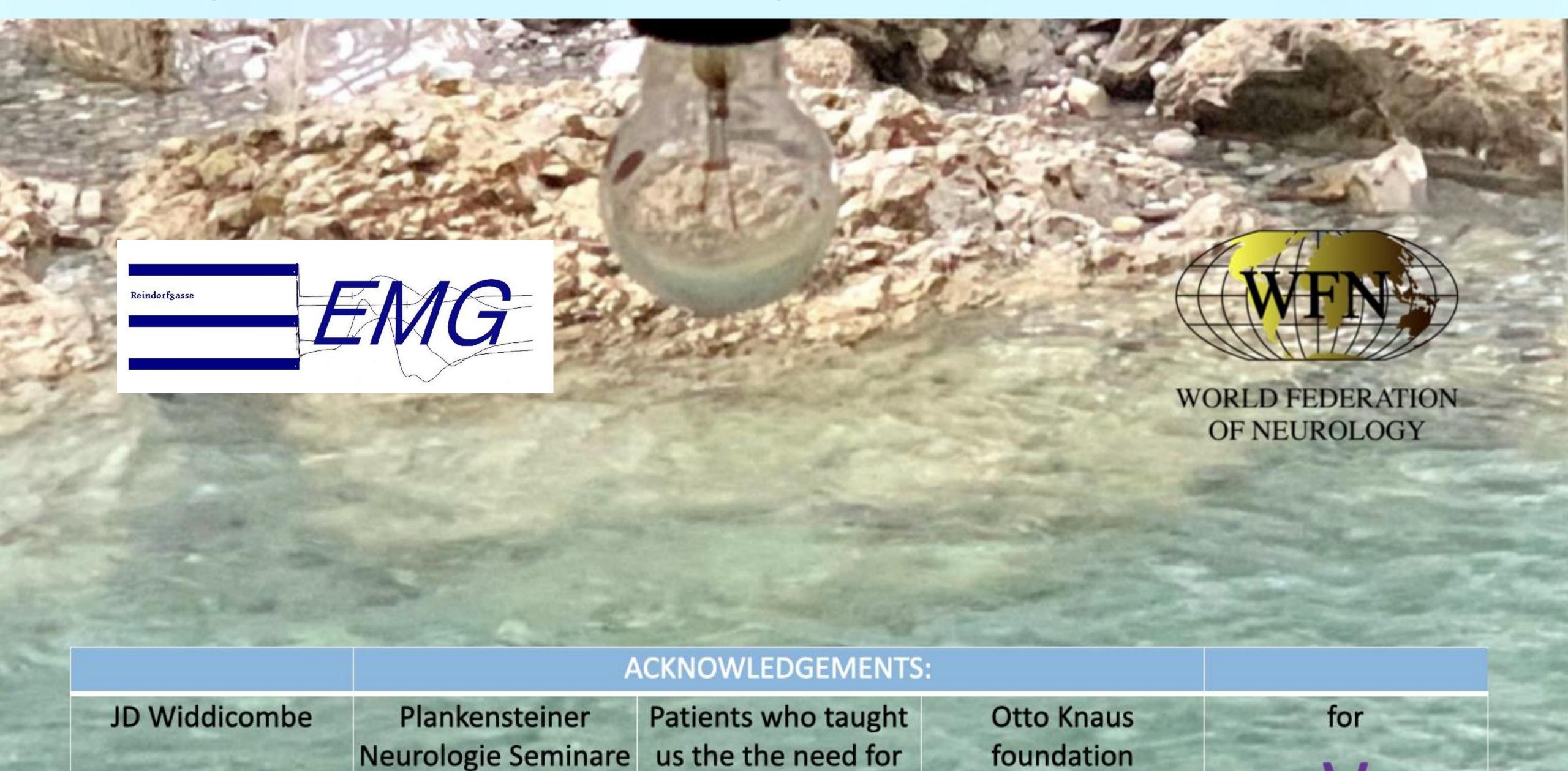
2026

ICNMD

Vancouver (Canada)

Copenhagen (Denmark)

Florence (Italy)



Questions:	General: Wolfgang Grisold grisoldw@gmail.com	Immune Neuropathies and ICI: Anna Grisold anna.grisold@gmail.com	Nerve Ultrasound: Stefan Meng stefan.meng@meduniwien.ac. at
	Please specify precise question, please use English	Specific question for ICI	Nerve ultrasound
	You can add an image or video		

EMG Reindorfgasse, Plankensteiner Neurologie Seminare, Otto Knaus Foundation, JD Widdicombe

Acknowledgements: Anna Grisold, Stefan Meng, Robert Schmidhammer

advocacy