

Neuroradiology in sub-Saharan Africa – what can, should, must be done In Neurodegenerative Diseases, Dementias and Movement Disorders

Amina NASRI, Mouna BENDJEBARA, Riadh GOUIDER

Department of Neurology, Razi University Hospital, LR18SP03, La Manouba, Tunis, Tunisia

12th Regional Teaching Course in sub-Saharan Africa Venue Virtual – Uganda: Neurology in SSA: Nuances and commonalities Saturday, 11 September 2021

CORE SEQUENCES

ADVANCED SEQUENCES

Declaration

• No conflicts of Interest

Prerequisite

- Before completing this Teaching Course, participants should have a background on.
 - 1. Clinical aspects of main neurodegenerative diseases, dementia and movement disorders
 - 2. Neuroanatomical basics
 - **3.** Neuroimaging basics (structural imaging (CT scan, MRI (sections/ sequences/ indications), functional imaging, molecular imaging)

Objectives

- After completing this Teaching Course, participants will be able.
 - 1. To determine the **adapted imaging protocol** for main neurodegenerative diseases, dementias and movement disorders
 - 2. To describe **abnormal imaging findings** in main neurodegenerative diseases, dementias and movement disorders

Introduction

- Role of Neuroimaging in dementia and movement disorders nowadays.
 - Extends beyond its traditional role of excluding neurosurgical lesions or other acquired/ treatable causes (exclusionary role)
 - > Supports/confirms diagnosis of specific neurodegenerative disorders (NDD) (inclusionary role)
 - > Contributes to the *early diagnosis* of NDD (in MCI→ early biomarkers)
 - >Assesses disease progression
- Need for standardized, adapted protocol

> For each type of NDD (dementias, parkinsonian syndromes, movement disorders)

► Exclusion of acquired conditions

"Look and you will find it - what is unsought will go undetected."

Sophocles

What can, should, must be done?

• Combination of imaging techniques: often needed for complete evaluation of the patient \rightarrow help establish the most likely diagnosis

Ranganathan et al, Changing landscapes in the neuroimaging of dementia, Ann Indian Acad Neurol,, 2018

CT Protocol

when contraindications prevent MRI (claustrophobia, pacemaker, very old age) when the only reason for imaging is to rule out surgically treatable causes

Negative scan angle

CT with negative scan angle for optimal vizualisation of the hippocampus in the transverse plane

Spiral CT of the brain with coronal reconstructions

Calcifications

MRI : What for?

- Determine degree and pattern of general cortical atrophy (GCA)
- Assess focal atrophy
- Assess microbleeds
- Determine degree of vascular damage and occurrence of strategic infarct
- Differentiate between various etiologies
- Exclude structural lesions

MRI Protocol in Dementia/NDD

MRI section/Sequence	Indication	Peculiar features
Coronal-oblique T1	Medial temporal lobe and hippocampal atrophy	 In a plane orthogonal to long axis of hippocampus (perpendicular to hippocampus); parallel to brainstem 3D MPRAGAE isotropic voxels (reformatting a sagittal 3D T1 sequence through the entire brain) Thin-section images
Sagittal reconstructions	Midline structures and parietal atrophy	_
Transversal FLAIR	Global cortical atrophy (GCA) Vascular white matter hyperintensities Infarctions	3 mm slices, 1mm istropic voxels
Transverse T2W	Infarctions (in particular lacunar infarctions in the thalamus and basal ganglia)	3 mm slices, 1mm istropic voxels
Transverse T2•	Microbleeds in amyloid angiopathy Calcification Iron deposition	Gradient-echo, 3 mm slices, TE> 30ms, small flip angle
DWI	Young patients Rapidly progressive NDD (DD – vasculitis, CJD)	Supplemental sequence

Indications for DWI or contrast imaging

Rapidly progressive dementia/ Young patient

	Indications	DWI	Contrast imaging	
CJD		Restricted diffusion (basal ganglia or cortex)	No enhancement with contrast	
Infection	State State	Restricted diffusion (e,g, HSV)	Enhancement of inflamed areas	
Vasculitis	E	Areas of infarction	Vascular and leptomeningeal enhancement	
Recent ischemia		Restricted diffusion	Cave luxury perfusion with enhancement in subacute	

Visual Rating Scales in Dementia

- Global cortical atrophy (GCA)
 - Pasquier scale (0–3)
- Medial temporal lobe atrophy (MTA)
 - Scheltens scale (0-4)
- Posterior cortical atrophy
 - Koedam scale (0–3)
- Fronto-temporal atrophy - *Kipps scale (0-4)*
- White matter hyperintensities (WMH)
 - global Fazekas (0–3)
 - regional ARWMC (0-24)
 - Visual rating of WMHs according to Scheltens (0–84)
- Microbleeds
 - -BOMBS
 - -MARS
- Enlarged perivascular spaces (EPVS)

Global Cortical Atrophy (GCA)scale (Pasquier scale: 0-3)

• Best assessed on FLAIR and 3D T1 images (Cortical atrophy is best scored on FLAIR images)

Score 0 No cortical atrophy (Normal) Score 1 Mild atrophy (opening of sulci = Open sulci) Score 2 Moderate atrophy (volume loss of gyri –Gyral atrophy) Score 3 Severe (end-stage) atrophy (knife blade' atrophy)

J Korean Neuropsychiatr Assoc. 2018 Harper L et al. J Neurol Neurosurg Psychiatry 2015

Medial temporal lobe atrophy (MTA) scale (Scheltens scale: 0-4)

Score	Width of choroid fissure	Width of temporal horn	Height of hippocampal formation
0	N	N	N
1	↑	Ν	N
2	$\uparrow \uparrow$	\uparrow	\downarrow
3	$\uparrow \uparrow \uparrow$	$\uparrow \uparrow$	$\downarrow\downarrow$
4	$\uparrow \uparrow \uparrow$	$\uparrow \uparrow \uparrow$	$\downarrow\downarrow\downarrow\downarrow$

score 0: no atrophy

score 1: only widening of choroid fissure

score 2: also widening of temporal horn of lateral ventricle score 3: moderate loss of hippocampal volume (decrease in height) score 4: severe volume loss of hippocampus

< 75 years: score 2 or more is abnormal.

> 75 years: score 3 or more is abnormal

Height of hippocampal formation Width of temporal horn

Width of choroid fissure

0

Alahmariet al, International Journal of Radiology 2020

MTA/Scheltens scale

- rated on coronal T1
- slice through corpus of hippocampus (level of anterior pons)

J Korean Neuropsychiatr Assoc. 2018

Posterior cortical atrophy (Koedam scale : 0-3)

 Scale rated on: Sagittal and coronal T1 Axial FLAIR 		 Evaluates: Sulci: Posterior cingulate Parieto-occipital Parietal Cortex (including the precuneus) 	PA 1 PCS PRE PRE
Koedam score	Parietal cortical atrophy	Sulci	Pas
Grade 0	No cortical atrophy	Closed sulci of parietal lobes and cuneus	
Grade 1	Mild parietal cortical atrophy	Opening of sulci (mild widening of posterior cingulate and parieto- occipital sulci)	POS PRE
Grade 2	Moderate/substantial parietal atrophy	Volume loss of gyri (substantial widening of the sulci)	
Grade 3	Severe atrophy = end- stage « knife-blade » atrophy	Extreme widening of the posterior cingulate and parieto-occipital sulci	P A A A A A A A A A A A A A A A A A A A

Fronto-temporal atrophy (Kipps scale : 0-4) Scale 1

Scale rated on T1-weighted coronal

tage	Frontal lobe	Anterior temporal lobe	Posterior temporal lobe
0	Normal appearances	Normal appearances	= normal appearances
1	mild atrophy of orbital or supero-medial frontal cortex – contour of the basal ganglia in the lateral ventricle is convex, as in controls, but with some prominence of the lateral ventricle	slight prominence of anterior temporal sulci	slight increased prominence of the lateral ventricle to form a rim around the anterior hippocampus – temporal sulci show mild prominence
2	definite sulcal widening in any cortical subregion or flattened profile to basal ganglia	temporal sulci definitely widened	lateral ventricle unarguably dilated with subtle reduction in hippocampal size – the medial temporal gyri may be atrophic, and there may be prominence of the temporal sulci
3	severer cortical atrophy with clear reduction in white matter and reduced white-grey matter differentiation – stage 3 basal ganglia have concave profile	gyri severely atrophic and ribbonlike – white and grey matter cannot be distinguished (normal temporal lobe at this level is less substantial than the frontal lobe, and so the ribbon-like gyri of the stage 3 temporal lobe are similar to stage 4 frontal gyri)	the hippocampus is small and sits at the medial tip of a greatly expanded temporal horn – sulci are definitely widened
4	cortex reduced to a ribbon and the basal ganglia virtually indiscernible	temporal pole has a simple linear profile or is not seen at all	hippocampus is extremely small – temporal cortex and white matter show almost complete atrophy

Kipps et al,, Dement Geriatr Cogn Disord 2007

White Matter Hyperintensities. Global Fazekas scale (0–3)

best scored on transverse FLAIR or T2-weighted images

Fazekas score	White Matter Hyperintensities (WMH)
Fazekas O	None or a single punctate WMH lesion
Fazekas 1	Multiple punctate lesions
Fazekas 2	Beginning confluency of lesions (bridging)
Fazekas 3	Large confluent lesions

Kaushik et al, J Neurosci Rural Pract. 2021

Fazekas: CT vs MRI

Box 1 | Visual rating of WMHs according to Fazekas¹⁹

Fazekas 0

No WMHs

Fazekas 1

Focal or punctate lesions:

- Single lesions ≤9 mm
- Grouped lesions <20 mm

Fazekas 2

Beginning confluent lesions:

- Single lesions 10–20 mm
- Grouped lesions >20 mm in any diameter
- No more than connecting bridges between individual lesions

Fazekas 3

Confluent lesion:

 Single lesions or confluent areas of hyperintensity ≥20 mm in any diameter

Abbreviation: WMHs, white matter hyperintensities.

Age-Related White Matter Changes (ARWMC) scale

Applicable to both CT and MRI that has almost equal sensitivity

(except for certain regions (MRI>CT: parieto-occipital and infratentorial areas; FLAIR frontal and parieto-occipital)

Age-Related White Matter Changes (ARWMC) scale

ARWMC Score	White matter lesions	Basal ganglia lesions
0	No lesions	No lesions
1	Focal lesions	1 focal lesion (>5 mm)
2	Beginning confluence of lesions	>1 focal lesion
3	Diffuse involvement of entire region, with or without involvement of U fibers	Confluent lesions

White matter lesions

Basal ganglia lesions

Visual rating of WMHs according to Scheltens (0-84)

Scheltens, P. et al. A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J. Neurol. Sci. 1993 Prins, & Scheltens, White matter hyperintensities, cognitive impairment and dementia. an update .Nat. Rev. Neurol, 2015

Microbleeds

best scored on T2*-weighted (SWI) images

The Microbleed Anatomical Rating Scale (MARS) Reliability of a tool to map brain microbleeds

Improving Interrater Agreement About Brain Microbleeds Development of the Brain Observer MicroBleed Scale (BOMBS)

Charlotte Cordonnier, PhD; Gillian M. Potter, FRCR; Caroline A. Jackson, MSc; Fergus Doubal, MRCP; Sarah Keir, MD; Cathie L.M. Sudlow, DPhil; Joanna M. Wardlaw, FMedSci; Rustam Al-Shahi Salman, PhD

Gregoire et al,, Neurology, 2009

Cordonnieret al,, Stroke, 2009

Figure Micr	robleed Anatomical Rating Sc	ale			The	BOMBS rating scale						(Ch.)	No
Patient I	D-	Data of Birth	/ Data of MRI	1.1							Mile		Supratentorial
Tatient	<i>b</i> .	Date of Birth	Date of MIKI			Brain Obse	rver Micro	Bleed Scale	e (BOMBS)			24	Lobar
DEFINITE	E MICROBLEEDS: Small, re	ound, well-defined, hyp	pointense on GRE T2*; 2-10 mm; not well	ll seen on T2		Date of MRI / Date	ate of birth	_'_'_	Study II)			Subcortical white matter
 MICROBL Vessels: 	LEED MIMICS linear / curvilinear lesions in	subarachnoid space, us	ually cortical or juxta-cortical (visible on	T2)		Are there any BMBs* ?	+ Stop				27		
 Minerali Haemorr 	ization in globi pallidi or denta rhages within area of infarctio	te nuclei: symmetrical n (look at the T2, FLA)	hypointensities (may be bright flecks on) IR or DWI sequences to identify infarction	CT) n)		Yes	Benarara c	ommen RMR rat	lina probleme:			06/	Deep Caudate + lentiform nucleus
 Air-bone Partial w 	e interfaces: frontal / tempora olume artifact at the edges of	l lobes (check adjacent the cerebellum (check a	GRE T2* slices to clarify) adjacent GRE T2* to clarify)			Are there 1-2 BMBs?	· Flow	voids in small con intensity at site of	tical vessels [cl	eck T2/FLAIR)		Curry 1	Thalamus Internal & external capsules
- Small ha	aemorrhages close to a large I	CH (visible on GRE T2	2*) or to an infarct (visible on T2, FLAIR	t or DWI)	17284	No	 Symi Rate 	natrical hypointen as 'uncertain' if p	nity in globi pal ale or in a posit	id (check CT o	aldum7] to pertial volume		
Right	Left				Mo	Uncertain about any BMBs?	+ Beve	a [adjacent to pet ins rating only 1 o	rous temporal I r 2 BMBs <5mr	xane ar orbit) n ['uncertain' if in	n doubt	Top	Infratantarial
	DEFI	NITE POSSIBLE			4			Co.b.s					
	R	LKL			Rate		Certain	Uncertain	Certain	Lincertain	- Rate	1 million	Brainstem
TOTAL	Brainstern (B)	_	10 10 10	Ec		Cortex / grey-white junction ¹				e. de las	-	No.	
	Cerebellum (C)		CIMBA	X K A		Number of BMBs <5mm							
	Basal Ganglia			A A A		Number of BMBs 5-10mm			E				
	(Bg)*	_	CT QEX			Subcortical white matter ²			- L				
Deep	Thalamus (Th)		B	- (Th		Number of BMBs <5mm	1			1000			
TOTAL	Internal Capsule (Ic)		16 A 18 8	K CNRVA		Number of BMBs 5-10mm							
	External Capsule (Ec)					► Basal ganglia grey matter ³		_		100	Lobar	Dee	ep data basilfaren italarena
	Corpus Callosum			N SE		Number of BMBs <5mm					white matter	inte	mal, external capsules
	(Cc) Deep and		-			Number of BMBs 5-10mm				1000	la la		
	periventricular WM (DPWM)		SMEN D			Internal and external capsule	1.1-1.2	188-1873 1			(a)		A
l			G F T	ANRA .		Number of BMBs <5mm					1 all		
	Frontal (F)		5 cc 1 -3	(52 1 5R		Number of BMBs 5-10mm					F	A DA	
Lobar**	Parietal (P)		DPWM	ESF - S		► Thalamus					53	Z()	
TOTAL	Temporal (T)		P P	ALA IZ Y		Number of BMBs <5mm							
	Occipital (O)		V and S	EPHE A		Number of BMBs 5-10mm							
	Insula (I)		NOT COM			► Brainstem						Z V	
						Number of BMBs <5mm							
	TOTALS					Number of BMBs 5-10mm							//
						► Cerebellum				24000-040 2000-040		and and	
* (Caudate, L	Lentiform), **Lobar regions inclu	de cortex and subcortical	white matter	Gregoire et al. Neur	ology, 2009	Number of BMBs <5mm					Condonnion	tal Stroko	2009
The rating form is av DWI – diffusion-wei	vailable on the Neurology® We ighted imaging: ICH – intracer	b site at www.neurology ebral hemorrhage.	y.org. GRE – gradient-recalled echo; FLAIR	R - fluid-attenuated inversion recovery;		Number of 8MBs 5-10mm						t al,, SllOKC,	2003

Microbleeds. BOMBS scale

'Certain' BMBs

C J Wardlaw, University of Edinburgh

Examples of common 'BMB mimics'

1. Basal ganglia calcification 2. Cortical vessels

3. Partial volume artefact

From petrous temporal bone

From orbit

Cordonnieret al., Stroke, 2009

J Wardlaw, University of Edinburg

w. University of Edinburgh

Enlarged perivascular spaces (EPVS) scale

best scored on T1/T2/FLAIR images, regions. centrum semiovale (CSO), basal ganglia (BG), hippocampus, in most affected hemisphere

O– no EPVS
1 - < 10 EPVS
2- 10-20 EPVS
3-21-40 EPVS
4 - > 40 EPVS

EPVS: Differential Diagnosis

Maclullich et al, J Neurol Neurosurg Psychiatry. 2004 Dubost et al. NeuroImage 2018

Advanced MR techniques

• Perfusion Weighted imaging (PWI)

Type of information obtained comparable to nuclear medicine

• BOLD fMRI

fMRI typically refers to images obtained by using the blood oxygen level dependent (BOLD) contrast

Diffrences in magnetic susceptibility between oxygenated and deoxygenated blood serves as an intrinsic contrast medium

• MR spectroscopy

In patients with NDD: usual finding= change in the ratio between metabolites or a general decrease in metabolites

• Diffusion Tensor Imaging (DTI)

DTI in dementia have consistently shown alterd diffusion (tract) properties in accordance with the pattern of neurodegenrative pathology

The EPAD core and advanced sequences

What should be done

A radiological report should describe:

- Medial temporal lobe atrophy (MTA) Scheltens score with explanation)
- General or local widening of sulci (Global Cortical Atrophy (GCA) stage with explanation)
- Width of ventricles
- White matter hyperintensities (WMH) (score according to Fazekas scale with explanation)
- Size and position of infarcts
- Other changes (tumour, normal pressure hydrocephalus, subdural hematoma etc.)
- Comparison with previous examinations (progression of atrophy or white matter changes etc.)
- CONCLUSION: assessment of findings in relationship to clinical suspicion and other examinations such as CSF, PET or SPECT.

Normal ageing or pathological conditions?

- « Successful » ageing:
- minimal morphological (physiological) loss
- Brain imaging abnormalities without overt clinical deficits or symptoms
- >Global cortical atrophy:-
- Brain weight peaked by the mid-to-late teens.
- •0.2% / year:- 30-50 years
- =0.3 to 0.5%/ year:- 50-70 years
- Shrinkage of cortical grey matter predominates over white matter loss
- The parietal and frontal lobes are equally affected.

>Medial temporal atrophy:-

MTA score 2 is normal in nondemented pt over 75 year age.

- •0.2% per year:- 30-50 yr
- •0.8% per year:-50-70yr
- 1.5 to 2% per year:- above 80 yr

Microbleeds:-

Usually found in the basal ganglia or thalamus and posterior fossa in

hypertensive patients

Enlarged Virchow robin space:-	-White matter hyper intensities:-	≻Iron accumulation:-	Reduced resting-state fMRI activity (anterior frontal, precuneus, and posterior cingulate cortices) in ageing
Most enlarged VRS <2 mm in diameter	 Periventricular hyperintensities suggestive of increase extracellular fluid and sub 	Usually involves globus pallidus,	posterior emgulate correcs) in ageing.
"Usually found in striatum, ant perforated	ependymal gliosis.	nucleus	Grey matter perfusion decreases by 0.45% per year in healthy adult subjects predominantly in the frontal cortex
substance and ant commissure	Represent usual aging phenomenon.	•Hypointensity on T2 images	Hypometabolism in frontal and post cingulate cortex on EDG-PET
Diffuse widening of VRS in basal		 Started appearing around third decade 	Frypolications in informatian and post enignate contex of PDO-PD1.
ganglia is suggestive of focal atrophy	*Panctiform and early confluent deep WMH often have little clinical		Abnormal uptake in amyloid-PET is seen in 30% normal eldery subjects.

رجة, 75 years old, Progressive memory deficits of hippocampal profile, slow worsening (since 70 y.o.)

Oblique coronal T1

Axial FLAIR

Sagittal T1

GCA (Pasquier) score: 3 MTA (Scheltens) score: 4 Posterior cortical atrophy (Koedam) score: 3

Axial FLAIR

Alzheimer's disease (AD) (Late onset, typical amnestic form, advanced stage)

Imaging patterns of AD

- Typical amnestic form: Hippocampal and precuneus atrophy
- Late AD (>65 years) + APOE 4: Predominant hippocampal atrophy
 - *Early AD (<65 years)*: More *posterior* cortical atrophy

Staffaroni et al,, Neuroimaging in dementia, Semin Neurol. 2017

Atypical Forms of AD

Behavioral (Frontal) variant

dorsolateral, ventrolateral, and ventromedial prefrontal and insular cortical atrophy

Logopenic progressive primary aphasia (PPA) variant

left-lateralized temporal cortical atrophy

Posterior Cortical Atrophy (PCA) variant

Corticobasal syndrome (CBS) variant

left-lateralized peri-Rolandic and parietal cortical atrophy

bilateral occipitoparietal atrophy

Camsari et al., JNeurol Clin. 2016 Dickerson et al., CNS Spectr. 2017

From Mild cognitive Impairment (MCI) to AD?

• hippocampal atrophy + concomitant widening of the collateral sulcus= both signs of progressive MTA

• Slight parietal atrophy: independent predictive value for conversion from MCI to AD

ہ 65 years old, similar cases in family Since age 61, personality changes, apathy, then behavioral disorders (hyper orality, disinhibition, aggressiveness),no overt memory deficits

Fronto-temporal lobar degeneration(FTLD). behavioral variant (BvFTD)

FTLD spectrum

Mackenzie et al,, J. Neurochem., 2016 Irwin et al,, Frontiers in Aging Neuroscience, 2013 Kiyung et al,, JMD Journal of Movement Disorders 2005
FTLD-Tau

Pick's disease (3R)

Asymmetric fronto-insular atrophy entended to anterior temporal

CBD (4R)

More Posterior atrophy Preserved frontoinsular area

PSP(4R)Specific MRI patterns B

Bang et al,, Lancet. 2015

FTLD-Tau

Progressive supranuclear palsyPSP (4R)

- Marked dilation of third ventricule
 - Dorsal mesencephalic atrophy
- Thinning of superior cerebellar penduncules
- Atrophy of thalamus, basal ganglia and frontal cortex

Reduced midbrain area compared with the pons

Thinned superior cerebellar peduncles on coronal section (B; arrows) compared with the middle cerebral peduncles (C; arrows)

Mickey Mouse

Mickey mouse sign

Hummingbird/penguin sign

moderate

FTLD-Tau

Progressive supranuclear palsyPSP (4R)

The "hypointense substantia nigra" sign. A novel MRI marker of progressive supranuclear palsy

=Hypointense area at the medial substantia nigra in T1

Constantinides et al,, J Neurol Sci, 2021

Primary Progressive Aphasia (PPA)

Semantic variant (svPPA)

Substratum: TDP-43C Anterior and inferior temporal atrophy Asymmetric-Left Hemisphere

Agrammatic/non fluent variant (naPPA)

Substratum: Tau (4R) Atrophy: Inferior frontal, insular, premotor cortex Asymmetric-Left Hemisphere

Logopenic variant (lvPPA)

Substratum: AD Marked temporoparietal atrophy Asymmetric-Left Hemisphere

Staffaroni et al,, Neuroimaging in dementia, Semin Neurol. 2017

Q. 85 years old, Personal history of RBD Since the age of 80 , complex visual hallucinations, delirium, fluctuations, then parkinsonism, frequent upward falls , camptocormia

GCA (Pasquier) score: 1 MTA (Scheltens) score: 0 Posterior cortical atrophy (Koedam) score: 1

Dementia with Lewy Bodies (DLB)

Synucleinopathies. PD, DLB, MSA

Dementia with Lewy bodies

Generalized atrophy Less medial temporal atrophy than AD Possible parieto-occipital WM lesions

If medial temporal lobe preserved → supports DLB diagnosis If medial temporal lobe atrophied→ Not diagnostically helpful Parkinson's disease (PD)

Vs healthy controls: -Medial temporal and frontal atrophy -Severe dementia (PDD) with temporal atrophy -Frontal, temporal and occipital WM lesions

Multiple system atrophy (MSA)

Vs PD and PSP:
-greater striatum, brainstem, and cerebellar atrophy
Specific features:
-Hot-cross bun sign (cruciform sign)
-Putaminal rim sign

Staffaroni et al., Neuroimaging in dementia, Semin Neurol. 2017 Rodriguez et al., Alzheimer's & Dementia, 2012 Petrou et al., Imaging Med. 2012

Synucleinopathies

Multiple system atrophy (MSA): MSA-c and MSA-p

Hot-cross Bun sign (HCB) or "cruciform T2" sign (MSA-c>>MSA-p)

Putaminal rim sign MSA-p>>MSA-c

Putaminal hypointensity with a hyperintense "putaminal rim" sign on an axial T2-weighted MRI

Chelban et al,,, Journal of Neurology (2019) Staffaroni et al,, Neuroimaging in dementia, Semin Neurol. 2017

Most Common Imaging Patterns of Idiopathic Parkinson Disease and APS						
	Imaging Modality					
Disease Entity	MR Imaging	FDG PET	Amyloid PET	123I Ioflupane SPECT		
Parkinson disease	Often normal, occasional diffuse atrophy	Usually normal, preserved putaminal activity, occa- sional decreased uptake in the parieto-occipital cortex	Normal	Decreased striatal activ- ity (usually asymmet- ric)		
MSA	Putaminal atrophy and marginally increased T2 signal, "hot cross bun sign"	Decreased putaminal or cerebellar uptake, subtype dependent	Normal	Symmetric or asymmet- ric decreased striatal activity		
PSP	"Hummingbird sign," "Mickey Mouse sign"	Decreased uptake in the pos- terior frontal lobes, mid- brain, and basal ganglia	Normal	Symmetric or asymmet- ric decreased striatal activity		
DLB	Diffuse atrophy	Generalized decreased uptake (more prominent in the occipital lobes)	Positive in most cases	Symmetric or asymmet- ric decreased striatal activity		
CBD	Asymmetric parietal and/or frontal corti- cal atrophy	Asymmetric decreased up- take in the parietal and/or frontal lobes	Normal	Decreased striatal activ- ity (usually asymmet- ric)		

Note.—APS = atypical parkinsonian syndromes, CBD = corticobasal degeneration, DLB = dementia with Lewy bodies, MSA = multiple system atrophy, PSP = progressive supranuclear palsy.

ہ 62 years old, rapidly progressive cognitive decline, myoclonus, dystonia, chorea (within few months)

Greutzfeldt Jakob disease (CJD): Sporadic and variant CJD

Staffaroni et al,, Neuroimaging in dementia, Semin Neurol. 2017

Greutzfeldt Jakob disease (CJD): Sporadic and variant CJD

UCSF 2017 Proposal of MRI Criteria for JCD Diagnosis

Diagnosis	UCSF 2017 Modified JCD MRI criteria ^d		
MRI definitely JCD	DWI ^b > FLAIR cortical ribboning ^c hyperintensity in:		
	 Classic pathognomonic cingulate,^d striatum, and > 1 neocortical gyrus (often precuneus, angular, superior parietal, superior frontal, middle frontal, or lateral temporal gyrus) 		
	a. Supportive for subcortical ^e involvement:		
	i. Striatum with decreasing anterior-posterior gradient		
	ii. Corresponding ADC hypointensity		
	b. Supportive for cortical involvement:		
	i. Asymmetric involvement of midline neocortex or cingulated		
	ii. Sparing of precentral gyrus ^f		
	iii. Corresponding ADC cortical ribboning hypointensity		
	Cortex only (> 3 gyri); ee supportive for cortex (above)		
MRI probably JCD	 Unilateral striatum or cortex (≤3 gyri); see supportive for subcortical and cortex (above) 		
	 Bilateral striatum (see supportive for subcortical) or posteromedial thalamus; see supportive for subcortical (above) 		
	3. DWI > FLAIR hyperintensities only in limbic areas, with corresponding ADC hypointensity g		
MRI probably not JCD	 Only FLAIR/DWI abnormalities only in limbic areas, where hyperintensity can be normal (e.g., insula, anterior cingulate, and hippocampi), and ADC map does not show corresponding restricted diffusion (hypointensity) 		
	2. DWI hyperintensities due to artifact (signal distortion); see other MRI issues (below)		
	 FLAIR > DWI hyperintensities^h, see other MRI issues (below) 		
MRI definitely not JCD	1. Normal		
	2. Abnormalities not consistent with JCD		
Other MRI issues	In prolonged courses of sJCD (~>1 year), brain MRI might show significant atrophy with loss of DWI hyperintensity, particularly in areas previously with restricted diffusion.		
	To help distinguish abnormality from artifact, obtain b2000 diffusion sequences in multiple directions (e.g., axial and coronal).		

TABLE 2. Findings in different types of CJD

	CJD Type				
Features	sCJD	vCJD	fCJD	GSS	FFI
Mean age at onset	60–70 yrs	28 yrs	60 yrs	60 yrs	50 yrs
Duration of illness	5 mos	14 mos	6 mos	5 yrs	14 mos
Predominant clinical features	Rapid cognitive decline, myo- clonus	Early psychiatric symptoms, then cognitive decline	Similar to sCJD	Cerebellar signs	Insomnia
MRI findings	60%–70% have hyperintesity in basal ganglia or cortex	Pulvinar sign in 90%	Basal ganglia & cortical hyperintensity	Rarely abnormal	Nonspecific atrophy
EEG findings	PSWCs in 60%-70%	PSWCs negative	PSWCs in 75%	Rarely positive	Rarely positive
14-3-3 status	Positive in 90%	Positive in 50%	Similar to sCJD	Negative	Rarely positive
Genetics	MM1 most common (70%)	MM in 100%	PRNP mutation	P102L is most com- mon mutation	D178N mutation

Hyperintensity in basal ganglia and cortex

vCJD

A. Pulvinar sign. Hyperintensity in pulvinar B. Double Hockey stick sign. Hyperintensity in pulvinar + dorsomedial thalamus

Staffaroni et al,, Neuroimaging in dementia, Semin Neurol. 2017 Engleberg et al., 2013 *Q*, 50 years old, non consanguineous mariage Chorea (45 y.o.) then psychiatric disorders and cognitive deficits (48 y.o.)

Huntington disease (chorea)

Huntington disease. MRI findings

Ruocco et al,, CLINICAL PRESENTATION OF JUVENILE HUNTINGTON DISEASE, Arq Neuropsiquiatr 2006

Huntington disease like (HDL-2): same findings

HDL-2: most common Huntington's disease (HD) phenocopy in populations with an African ancestry

35-year-old HD subject with abnormal HTT allele = 49 triplet repeats

32-year-old HDL2 subject with abnormal JPH3 = 53 triplet repeats

32-year-old normal control subject

Yu et al,, Neural regeneration research, 2014

Approach to cerebral atrophy assessment in cognitive impairment

J. 54 years old,

Progressive cognitive decline, cerebellar ataxia, dystonia since the age of 48 Family history: Mixed movement disorders (dystonia+chorea) in his son /Dystonia in his daughter

Basal ganglia calcification is also known as Fahr's disease or Fahr's syndrome

Incidental

Cockayne disease

Aicardi-Goutières syndrome

Hyperparathyroidism

Saade et al., Intracranial calcifications on CT: an updated review, Radiology Case. 2019

Fahr's syndrome

On MRI: best appreciated on GRE/T2* or SWI, may be paradoxically hyperintense on T1 Hyperintensity on T1WI Hypointensity on SWI

CT>>MRI. Problem of differential diagnosis

Bekiesinska-Figatowska et al., Basal ganglia lesions in children and adults, European Journal of Radiology, 2013

T1 Hyperintensities

(in basal ganglia+++)

Wilson disease

T1-hyper- OR hypointensity

Carbon monoxide (delayed)

Neurofibromatosis type 1 Hamartoma

Methemoglobinemia

cyanosis, microcephaly, encephalopathy, axial hypotonia, dystonia with hyperkinetic movements

Bekiesinska-Figatowska et al., Basal ganglia lesions in children and adults, European Journal of Radiology, 2013

Manganese Intoxication

(Hemi)chorea-(hemi)ballismus

Non ketotic hyperglycemic chorea

Hepatic encephalopathy

Confusion + Flapping tremor (Asterexis) Hypoxia–ischemia,

newborns

T2* or SWI Hypointensities

x-ukhar-wan ukhourarenk

Hegde et al, Radiographics, 2011

Job Since the age of 24, difficulties with walking, speech, and writing, followed by dystonia and emotional and behavioral symptoms

Eye of the Tiger

PKAN: Pantothenate Kinase Associated Neurodegeneration

Neurodegeneration With Brain Iron Accumulation

At the age 36

At the age 2

Lee et al,, Brain MRI Pattern Recognition in Neurodegeneration With Brain Iron Accumulation, Frontiers in Neurology, 2020

9, 25 years old, consanguineous mariage, similar cases, Movement disorders (hyperkinetic (chorea+ dystonia)+ hypokinetic (since 22 y.o.) then cognitive deficits (23 y.o.) Altererd liver /copper tests

Wilson's disease. MRI findings

MRI abnormal in all patients, • Putamen most involved (85.3%), • Sensitivity of T2 and FLAIR was highest 97.1% each.
MRI load correlated with age, tremor, psychiatric disorder, choreoathetosis, and severity

Atypical Brain MRI findings

Classical Brain MRI findings

sign of the "giant Panda face"

Poujois et al,, Wilson's disease. A 2017 update, astroentérologie Clinique et Biologique, 2018

♂, 71 years old, presented with decreased consciousness (fluctuating Glasgow Coma Scale score of 5–7). He had a background of atrial fibrillation and was anticoagulated with dabigatran, a novel oral anticoagulant Computed tomography (CT) scan showed a mildly reduced attenuation in the region of the left thalamus. He later kept cognitive deficits with progressive decline (memory, language)

Bilateral thalamic infarction (artery of Percheron). Strategic Infarct

Vascular dementia (VaD)

Cognitive dysfunction in VaD can be the result of :

• Large vessel infarctions

- Bilateral in the anterior cerebral artery territory.
- Parietotemporal- and temporo-occipital association areas of the dominant hemisphere (angular gyrus included)
- Posterior cerebral artery territory infarction of the paramedian thalamic region and inferior medial temporal lobe of the dominant hemisphere
- *Watershed infarctions* in the dominant hemisphere (superior frontal and parietal)
- Small vessel disease
 - Multiple lacunar infactions in frontal white matter (>2) and basal ganglia (>2)
 - WMLs (at least more than 25% of WM)
 - Bilateral thalamic lesions

strategic PCA infarction involving the hippocampus

WMI (Fazekas 3) (Leukoaraiosis)

Strategic infactions	Site
Med Cerebral artery	Parieto-temporal or temporo- occipital association areas Angular gyrus
Post Cerebral artery	
Watershed infarctions	Superior frontal or parietal
Lacunar infarctions	Bilateral thalamic

Poujois et al,, Wilson's disease. A 2017 update, astroentérologie Clinique et Biologique, 2018

o^{*}, 65 years old, Family history: Stroke (hemorrhagic and ischemic), dementia Personal history of cerebral hemorrhage and Infarcts Progressive cognitive decline since the age of 62

Cerebral Amyloid Angiopathy (CAA)

Q, 45 years old, Family history. Migraine, Stroke, Dementia, Personal history. Migraine with aura Progressive cognitive impairment, mood disturbances, apathy, parkinsonism, seizures and stroke-like episodes

CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy)

CADASIL: Typical imaging findings

or, 72 years old, progressive cogntive decline, gait disorders, impairment of bladder control On examination: major cognitive impaiment, parkinsonian syndrome prevailing in lower limbs

NPH (Normal pressure hydrocephalus)

NPH (Normal pressure hydrocephalus)

EVANS Index> 0.30 to 0.33 -Variable for localisation and angle of section -Not specific

Corpus callosum angle

-50-80° vs hydrocephalus exvacuo ((100-120°)

DESH, the combination of high-convexity tightness, Sylvian fissure dilation, and ventriculomegaly increasingly recognized as a neuroimaging hallmark of iNPH

Continuum, 2016 Dement Neuropsychol, 2015

Approach to signal change assessment in cognitive impairment

Harper L, et al. J Neurol Neurosurg Psychiatry 2014

Harper L, et al. J Neurol Neurosurg Psychiatry 2014

Conclusion

- Large *panel of imaging assessments* for a large spectrum of diseases
- Need for a systematic (Gray matter, White matter, vascular, CSF) vs adapted strategy (use of visual scales, use of sequences,,,,) for both Clinicians and Radiologists
- Expending imaging findings and imaging techniques

→ Need to keep « informed » (updates and basics)

CORE SEQUENCES

ADVANCED SEQUENCES

Thank you for your attention