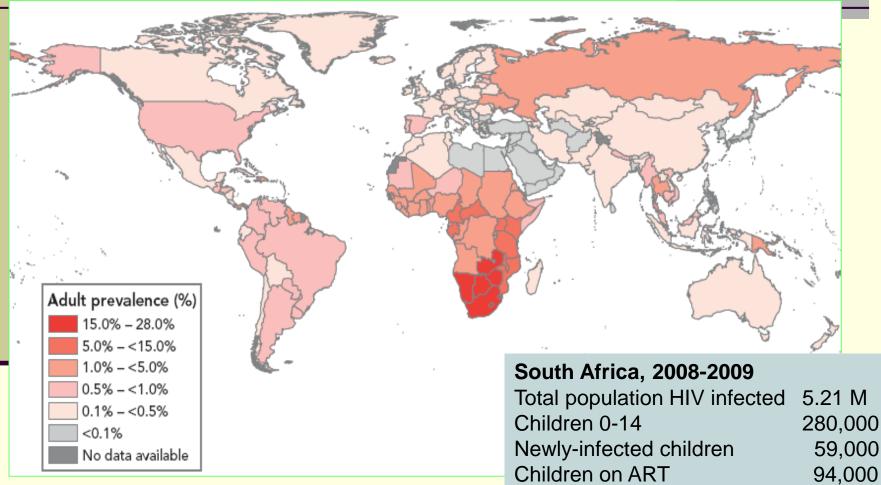


Jo Wilmshurst Department of Paediatric Neurology Red Cross Children's Hospital University of Cape Town South Africa Jo.wilmshurst@uct.ac.za

Update on CNS complications of HIV – implications for management.

Conflict of interest

- None
 - None


Learning objectives and Key points

- Why the brain is so vulnerable to HIV
- Could better treatments make a difference
- Neurological complications of HIV
- Common and troublesome complications
- Simple approaches
- Issues for the future

Curr Opin HIV AIDS 2014, 9:533-538

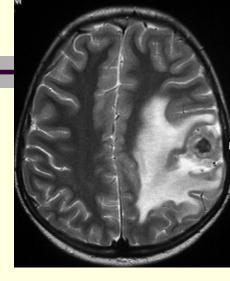
A global view of HIV infection

33.4 million people [31.1–35.8 million] living with HIV, 2008 Including 2.1 million children [1.2-2.9 million]

Estimated ART coverage

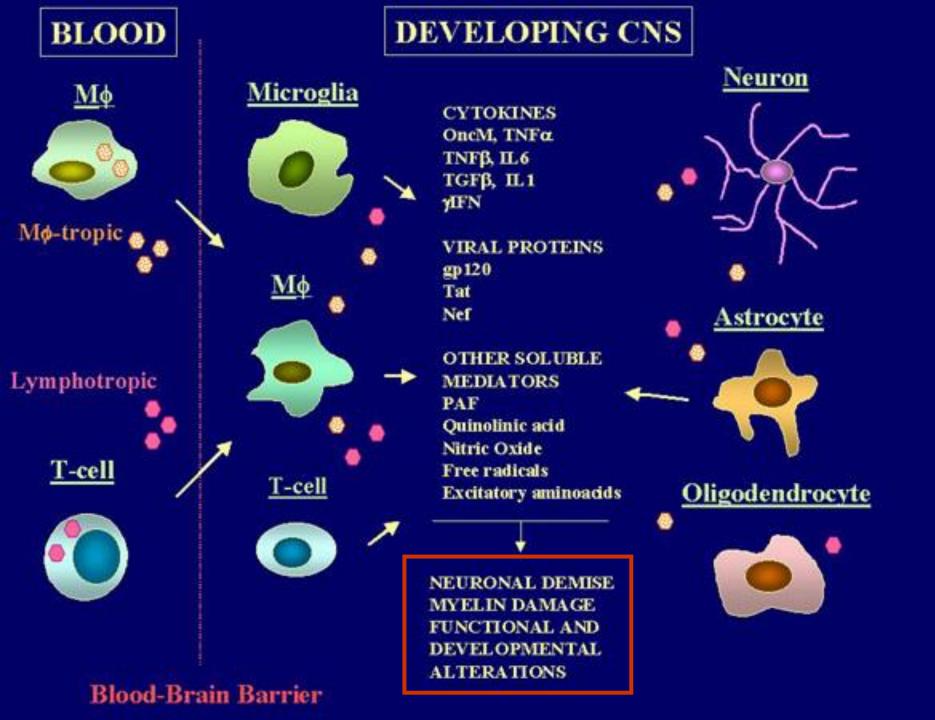
61%

UNAIDS, <u>http://www.who.int/lib/publications/global_report/2009/pdf/full_report.pdf</u> UNICEF, <u>http://www.uniteforchildren.org/files/CA_FSR_LoRes_PDF_EN_USLetter_11062009.pdf</u> Statistics South Africa, <u>http://www.statssa.gov.za/publications/P0302/P03022009.pdf</u>


Effective policies

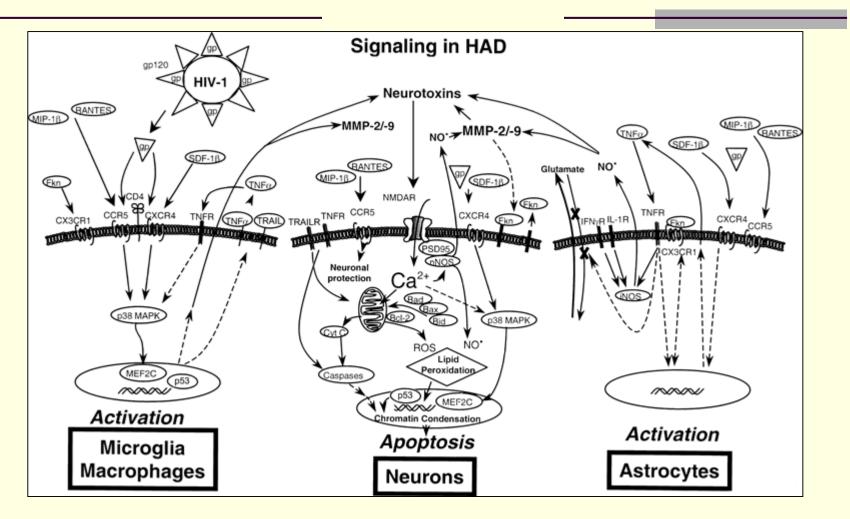
Brazil (Luiza et al Ped Inf Dis J 2009)

- Similar demographics / poverty challenges to RSA
- Aggressive approach to HIV
 - Free universal access to ART
 - Early diagnosis of HIV and associated infections in HIV infected pregnant women and their offspring
- Mother to child transmission prevention programs highly effective
- Children <13 years</p>
 - AIDS incidence 0.65 per 100 000 rate still falling


USA

A ten-fold decline in incidence of HIVE from 1996 after the introduction of ART, followed by stable incidence after 2002. (Patel et al AIDS 2009)

Neuropathology



Summary of Mechanisms

- Direct HIV cytopathic effect
- HIV protein toxicity/gene products: GP120, nef, tat
- Immune-mediated inflammatory response
- Chemokine receptors: CXCR4, CCR5
 - Vessel inflammation- vasculopathy

Pathways of neuronal injury / death

Kaul M, et al. Cell Death Differentiation 2005;12:878

New understandings.

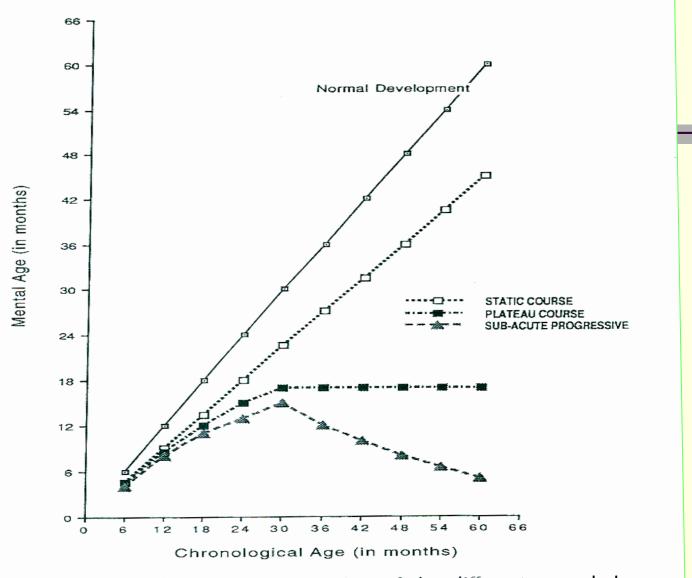
Ancuta et al 2008;Dunfee et al 2007;Kaul et al 2007;Schwartz et al 2007, Venkatsan A, et al. 2007, Pkamato S, et al. 2007, Brenchley JM, et al. 2006, Lawrence D. et al 2004

Entry into the CNS - Elevated lipopolysaccharides

- induce monocyte activation
- facilitates trafficking into the brain
- Forms part of the pathogenesis of HIV-associated dementia (HAD)

Entry into the cells

- Related to specific macrophage-tropic HIV-1 Env variants
- Mechanisms of toxicity leading to neuronal attrition


Role SDF-1

The role of progenitor cells

- Recent research supports the concept that HIV-1 is amplified in the maturing / developing brain
- Emerging evidence altered hippocampal neurogenesis may contribute to the pathogenesis of NeuroAIDS

Summary of HIV neuropathology

- CNS invasion early during primary infection
- Compartmentalization of infection
- Target cells: macrophages, microglia, astrocytes
- Neuronal loss
- Effects on neurogenesis
- Role of gene expression profiles & metabolomics in dissecting the pathogenesis
 - Morphological features: impaired brain growth / cortical and cerebral atrophy / ventricular enlargement
- Pathological features: reactive gliosis, microglial nodular formation /myelin pallor, calcification of basal ganglia / cerebral vascular abnormalities
- Neurological disease: very common and may be 1st AIDS-defining illness

Philip A Pizzo et al, Paediatric Aids, 3rd Edition

Background

- 50% of HIV1 infected children show neurological symptoms and signs during the course of the disease.
 - There is paucity of data on the prevalence of **specific neurological complications** in children with HIV1

Civitello et al European Collaborative Study

Neurological profile: RCWMCH

Govender R et al, JCN 2011

- Convenience sample: 78/600 children evaluated
- Mean age: 5.4 years (range: 0.25 12)
- Neurological deficits:
 - Normal examination: 32 (41%)
 - Global pyramidal deficit: 31 (38%)
 - Hemiplegia: 6 (8%)
 - Distal muscle weakness: 5 (6%)
 - Proximal muscle weakness: 3 (4%)
 - Cranial nerve deficits: 3 (4%)
 - Visual impairment: 13 (17%)
 - Hearing impairment: 18 (23%)

Past Medical History – "*the layering effect*"

Condition	No. of patients		
Chronic Lung Disease	29		
CMV infection	5		
CNS OI	12		
Epilepsy	11		
Behaviour Problems	39 (Ritalin:3)		
Other	15 FAS:2,PTB:9		

Neurological profile: RCWMCH

Govender R et al, JCN 2011

Developmental delay

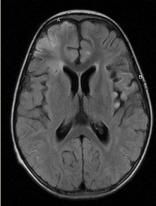
- Gross motor: 37 (47%)
- Fine motor: 33 (42%)
- Language: 32 (41%), including 7 with hearing deficits
- Social: 25 (32%)
- Cognitive: 38/64 (59%)

Behaviour rating

 Mild problems: hyperactivity (17%), stereotypies (3%), irritability (5%), lethargy (9%)

Specific problems

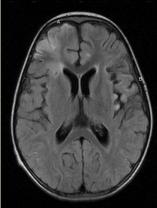
- HIV encephalopathy 31(40%) fulfilled CDC criteria
- Recurrent seizures: 11(14%)
 - idiopathic (7), symptomatic (3=infarcts, 1=CMV)
 - GTCS (8), Focal (3)
- Stroke: 6 (8%)
- Peripheral neuropathy: 5 (6%)
- Overall, 45/78 (57.7%) had at least one CNS deficit



Specific Neurological complications of HIV

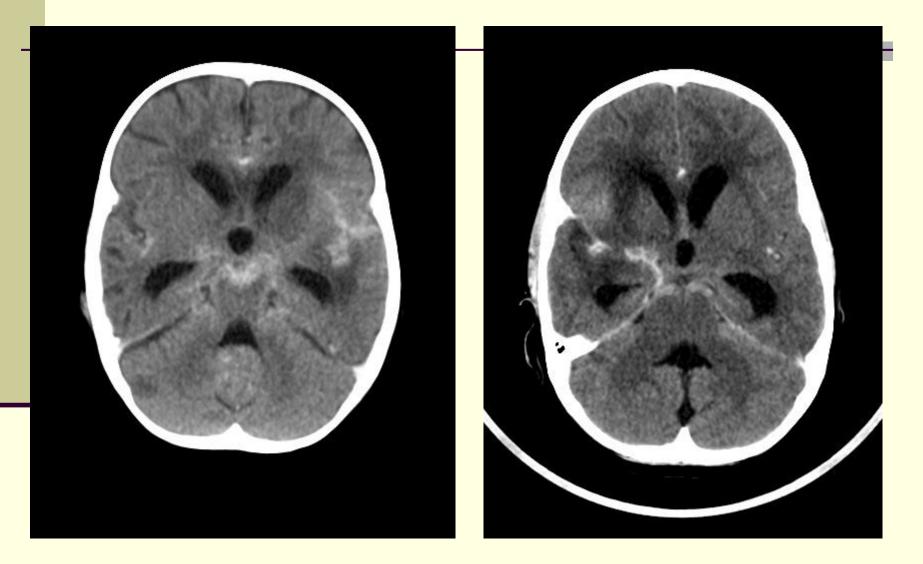
- Encephalopathy
- Behaviour
- Opportunistic infections
- CNS lymphoma
- Cerebrovascular disease
 - Vacuolar myelopathy
 - Peripheral neuropathy

- Myopathies
- Mitochondrial toxicity
- Dyslipidaemia and lipodystrophy syndrome
- Immune reconstitution inflammatory syndrome
- Epilepsy



Specific Neurological complications of HIV

- **Encephalopathy**
- Behaviour
- Opportunistic infections
- CNS lymphoma
- Cerebrovascular disease
- Vacuolar myelopathy
- Peripheral neuropathy


- Myopathies
- Mitochondrial toxicity
- Dyslipidaemia and lipodystrophy syndrome
- Immune reconstitution inflammatory syndrome
- Epilepsy

OPPORTUNISTIC CNS INFECTIONS

N=12/78 (15%) RCWMCH

Features of TB meningitis

Courtesy of Dr N Weiselthaler, Red Cross War Memorial Children's Hospital

CT scan findings

Discoss			
Disease	HIV-infected	HIV-uninfected	OR (CI)
Infarct	50.0%	40.5%	1.47 (0.54-4.04)
Basal infarcts	72.7%	91.7%	0.24 (0.02-2.78)
Cortical infarcts	18.2%	8.3%	2.44 (0.19-31.53)
B + C infarct	9.1%	0.0	3.57 (0.13-97.23)
Granuloma	0%	15.0%	0.11 (0.01-2.01)
Hydrocephalus	72.0%	97.9%	0.06 (0.01-0.49)
Communicating	100.0%	80.0%	5.49 (0.29- 103.46)
Non-communicating	0%	20.0%	-
Basal exudate	37.5%	71.4%	0.24 (0.08-0.70)

TBM therapy

- WHO recommends 12 months therapy
- Prospective observational study
 - 6/12 HIV uninfected and 9/12 HIV infected
- Intensified regimen isoniazid, rifampicin, pyrazinamide and ethionamide
 - 5% drug-induced hepatotoxicity
 - 80% of the children good outcome
 - 7 (3.8%) died.
- No significant difference between groups
- Not known how relates to recommended WHO Mx Van Toorn et al Pediatr Inf Dis 2014

Measles virus

- 2009-2010 South Africa epidemic measles outbreak
 - >18 000 lab confirmed cases
 - 1/3 < 1 year of age</p>
- Cluster of patients with Measles inclusion body encephalitis (subacute measles encephalitis) (youngest 14 yrs of age)
 - Hardie et al Virol J 2013;
 - Albertyn et al SAMJ 2011;
 - Macquaid et al Acta Neuropathol 1998

ISSUES IN PUBLIC HEALTH

Silent casualties from the measles outbreak in South Africa

Christine Albertyn, Helen van der Plas, Diana Hardie, Sally Candy, Tamiwe Tomoka, Edward B LeePan, Jeannine M Heckmann

May 2011, Vol. 101, No. 5 SAMJ

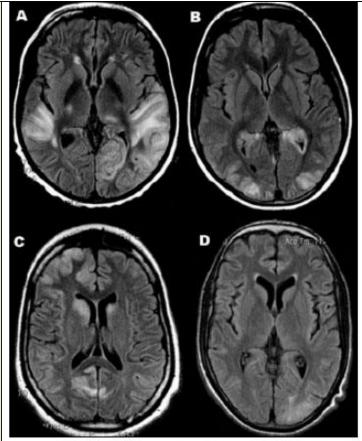
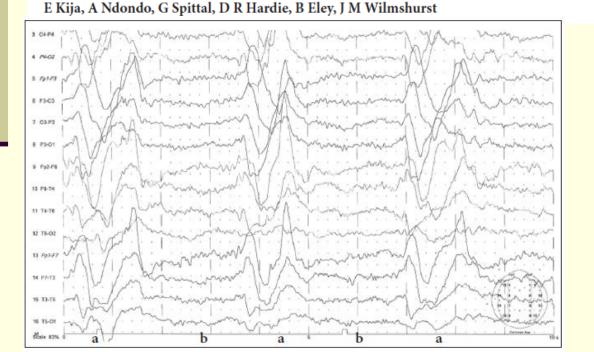
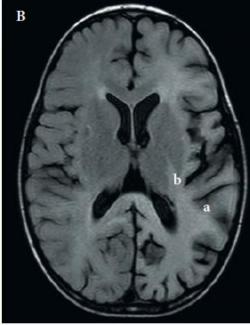


Fig. 2. Axial T2 FLAIR images demonstrating: A (Patient 6) – bilateral temporal-parietal cortical hyperintensities; B (Patient 2) – parieto-occipital cortical hyperintensities; C (Patient 3) – superficial cortical (left frontal and bilateral occipital) and deep grey matter (bilateral head of caudate) hyperintense signal abnormalities; and D (Patient 8) – hyperintense signal changes in the right occipital cortex.

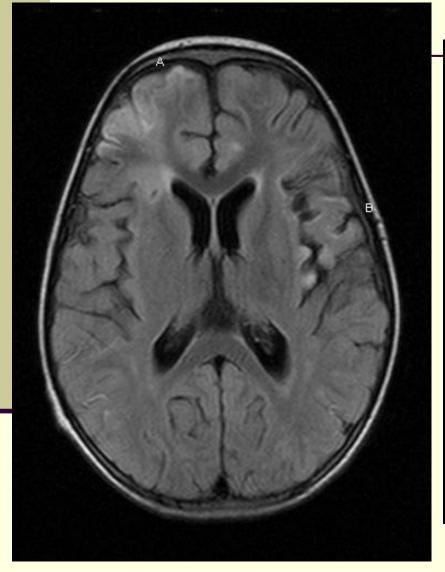

- Epilepsia partialis continuans
- Resistant to AEDs
- Evolving encephalopathy
- Poor outcome death in most

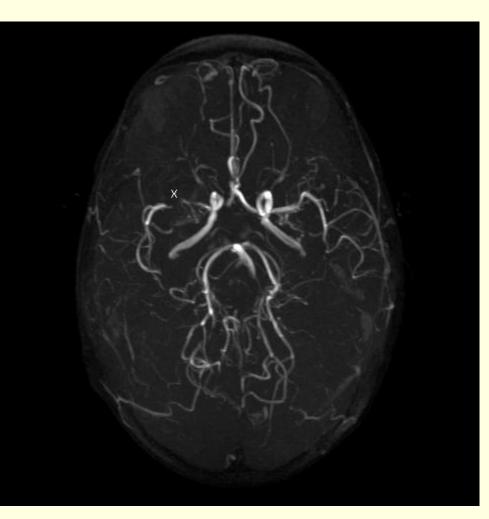

5 children (2 HIV infected, 2 died, median age presented 4¹/₂)

S Afr Med J 2015;105(9):xxxx. DOI:10.7196/SAMJnew.7788

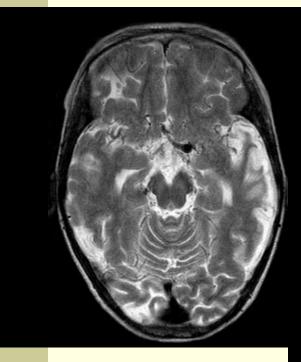
CLINICAL ALERT

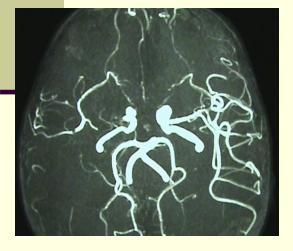
Subacute sclerosing panencephalitis in South African children following the measles outbreak between 2009 and 2011

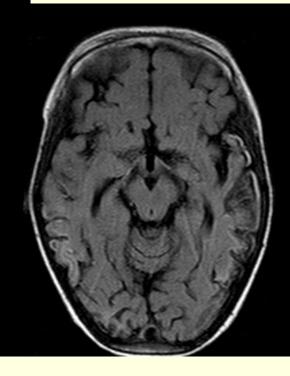




Cerebrovascular disease


RX study 6/78 (8%)


Stroke / arteriopathy


Hammond et al DMCN 2016

Moyamoya-like vasculopathy

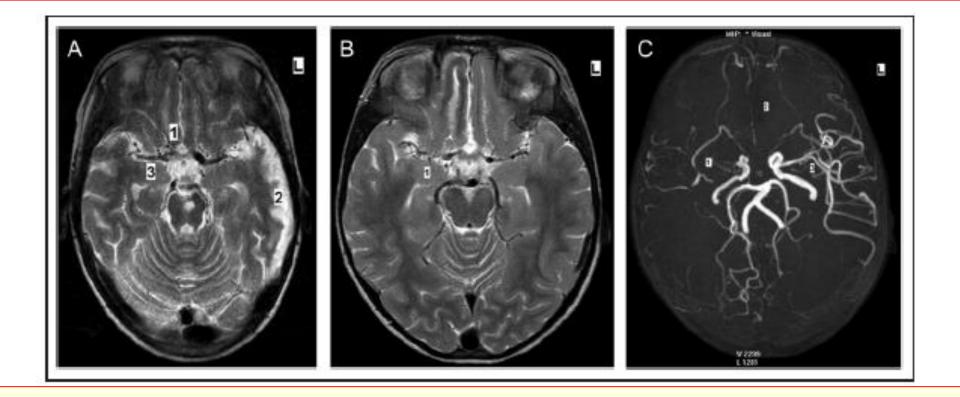
Courtesy of Dr T Kilborn, Red Cross War Memorial Children's Hospital

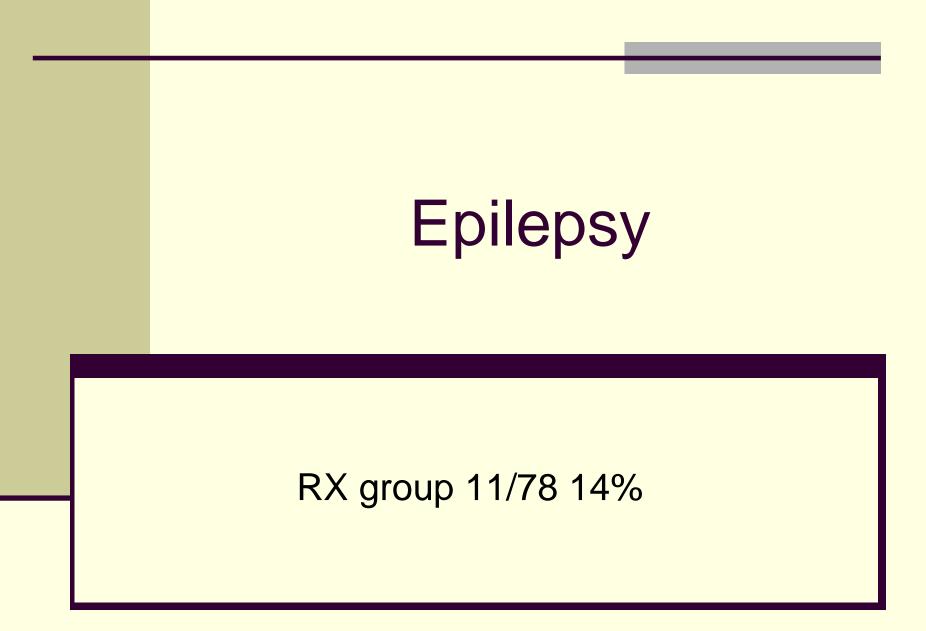
Silent progression in disease

- Cohort perinatally HIV infected infants
 - Followed up for 14 years
 - 8 patients infarcts
- Progression in 7/8 without further clinical manifestation
- Recommended low threshold for serial imaging
- Felt progression to Moya Moya illustrated treatment failure.

Izbudak et al J Neurorad 2013

HIV and moyamoya syndrome

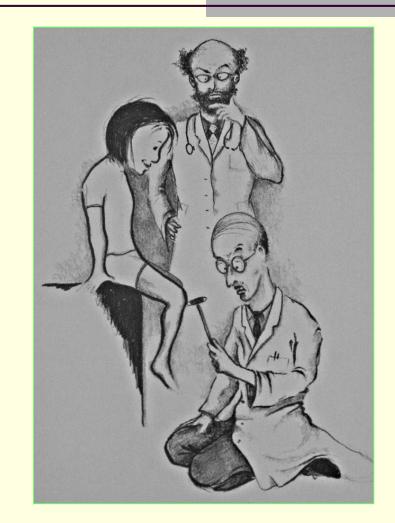

National SA survey


- 17 children HIV vasculopathy
- 5/17 moyamoya syndrome
- median age 5.8 yrs

Hammond et al JCN 2016

Common themes Hx of poor viral suppression Subtle presentations – evidence of silent progression Confused with HIVE Missed without MRA / MRI

South African patients with HIV moyamoya. *Hammond et al JCN 2016*



Epilepsy in HIV (14% RX group)

- Several variables
- 1. Common disorder coincidence
- 2. Directly part of the condition
- 3. Secondary to acquired pathology

Layering effect.....

Prevalence of seizures

Unknown

- Based on RX / GSH cohort 11/78 (14%)
- Extended study 27/354 (7.6%)
 - Literature 3-11% (adult data)
 - Impact / concern represents <u>1/3 referrals</u> to neuroHIV service

Acta Neurol Scand Suppl 2005 Seizure 2008 Samia et al JCN 2013

Specific medications

- Phenytoin, Phenobarbitone, Carbamazepine
 increase metabolic activity of the cytochrome p450 complex
- Concurrent use with protease inhibitors
 - may result in sub-therapeutic ARV levels
 - treatment failure
 - potential resistance to the PI class of drugs
- Pl
 - may in turn cause toxic levels of anticonvulsants by inhibiting cytochrome p450 system.

American Academy of Neurol 2000 Neurol 2006

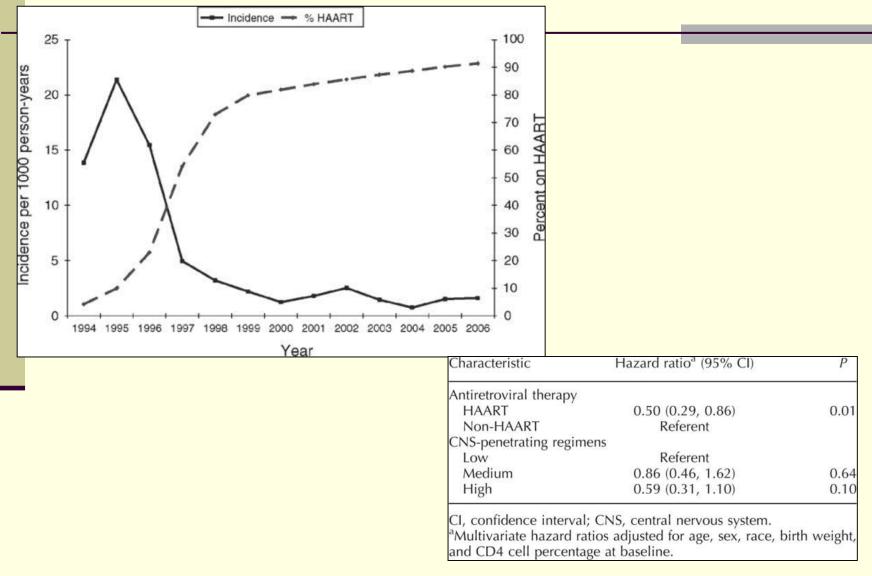
Sodium Valproate

- Currently recommended first line intervention for patients on ART with epilepsy
- Metabolised by glucuronidation
- Limited effects on the cytochrome p450 system

BUT

- Possible interactions between Ritonovir, lopinavir and efavirenz – related glucuronidation and protein displacement
- Decreased valproate levels occurred in combination therapy – breakthrough seizures

Annals of Pharmacotherapy 1989, 2007 Antimicrobial agents and Chemotherapy 2004 Bipolar disorders 2007


Bone mineral density and AEDs and HIV

- Combined use of ART and AEDs associated with risk of low bone mineral density
- Recognized in adult populations
 - thought to be exacerbated by low CD4 counts
- Supplementation with vitamin D encouraged

Yong MK *et al* J Acquir Immune Defic Syndr 2011 Yin M, Stein E. Clin Infect Dis 2011 Dao CN *et al*. Clin Infect Dis 2011

HIV ENCEPHALOPATHY

Incidence of HIV encephalopathy and percentage of children on ART, 1994-2006.

The challenges of neurodevelopmental delay in children with HIV infection

- Studies support the need for early intervention
 - The greater the delay in intervention the less the reversibility seen and the poorer the cognitive outcome
- Further compounded by "the layering effect"
 - Global causes associated with delay include
 - Iron deficiency anaemia
 - Iodine deficiency
 - Malnutrition and stunting
 - Inadequate stimulation

Lowick et al Psychol, Health & Medicine 2012 Puthanakit et al Pediatr Infect Dis J 2013 Ferguson & Jelsma. Int J Rehab Res 2009

Adolescents and Executive functioning

Adolescents – executive functioning (Koekkoek et al EJPN 2008)

- Apparently good CD4 levels
 - But disturbing manifestations
- Failure of executive functions
 - Couldn't cope with Activities of Daily Living
 - Affected attentional control and working memory
 - Slowed information processing (22% down)
 - One child IQ 105 at Red Cross Children's Hospital – still needed special care facility support

"Slow progressors"

- Correlation with poor performance in
 - Executive function
 - Related to lowered corpus callosum fractional anisotrophy (FA)
 - Lowered FA in the superior longitudinal fasiculus

Attention

- Related to lowered corpus callosum fractional anisotrophy (FA)
- Suggested that demyelination reflected by radial diffusivity may be prominent disease definer in paediatric HIV infection.

Relationship between apolipoprotein E4 genotype and white matter in HIV-positive young adults in South Africa

- Investigated the Apoprotein E (ApoE) genotype to neuropsychological functioning and white matter integrity of the corpus callosum
- In HIV-positive clade C HIV patients

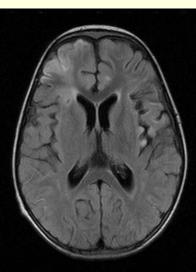
Found that **E4 allele variant of ApoE** was associated with memory impairment and white matter damage of the corpus callosum. Hoare et al Eur Arch Psychiatr Clin Neurosci 2013 Pathogenesis: The ART of HIV therapies: dopaminergic deficits and future treatments for HIV paediatric encephalopathy *Webb et al 2009*

- Neurotoxic HIV protein Tat on cells of fetal rat midbrain impacts on dopamine function
- Adult based studies marked decrease on the expression of tyrosine hydroxylase in the substantia nigra of pts with HAD.
 - HIV impacts on dopaminergic regions of the brain (basal ganglia and cortical motor and cognitive areas).

Pathogenesis: The ART of HIV therapies: dopaminergic deficits and future treatments for HIV paediatric encephalopathy Webb *et al* 2009

- HIV-related neuropathology (i.e. calcification and neuronal apoptosis)
 - Affects function of the basal ganglia
 - Impacts on the dopaminergic valence of cortical and subcortical brain regions which are connected by the frontostriatal circuits
 - Resulting in impairment to the cognitive and behavioural abilities they modulate

Therapeutic challenges for HIV-1 infected children with neurological disease


CNS penetration of ARVs

- Poor
- Agents have their own complications (lipodystrophy, cardiovascular disease, peripheral neuropathy)

Global management

- Social,
- behavioural,
- multisystem

Conclusion

- Children and adolescents infected with HIV in infancy suffer a different disease course compared to a decade ago
- This is compounded by the layering effect of HIV
 - Direct disease effects
 - Side effects from ARTs (efavirenz)
 - Socioeconomic challenges
 - Trauma of disclosure
 - Co-morbidities (previous infections, cerebrovascular events)



Acknowledgements

IDC

- Brain Eley
- Paul Roux
- Team
- Neurology / Child dev
- Reneva Petersen
- Kathie Walker
- Kirsty Donald
- Wendy Mathiassen
- Pauline Samia
- Rajeshree Govender
- Gill Riordan
- Alvin Ndondo

Red Cross War Memorial Children's Hospital, Cape Town

Table Mountain National Park

University of Cape Town