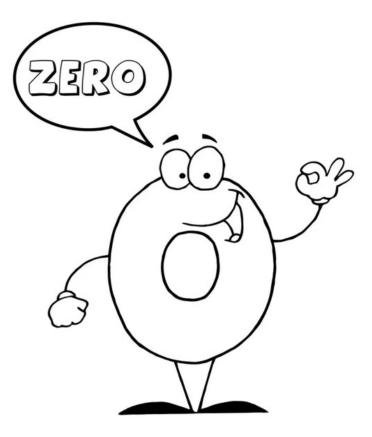
ENVIRONMENTAL AND NUTRITIONAL RISK FACTORS FOR NEURODEGENERATIVE DISEASES IN SSA

Gams Massi Daniel

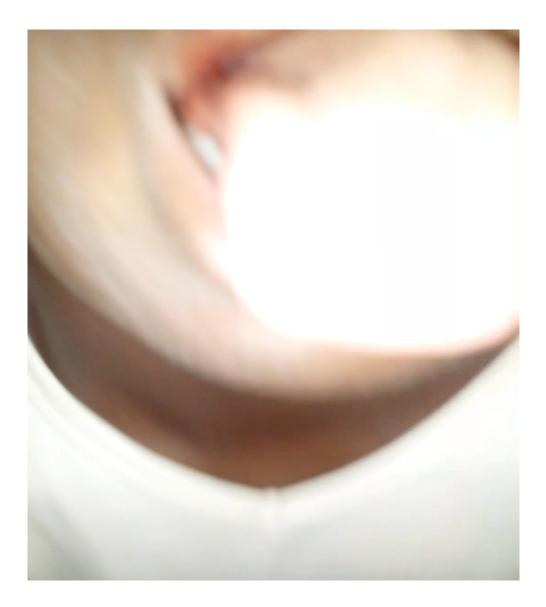
AFAN/CAN

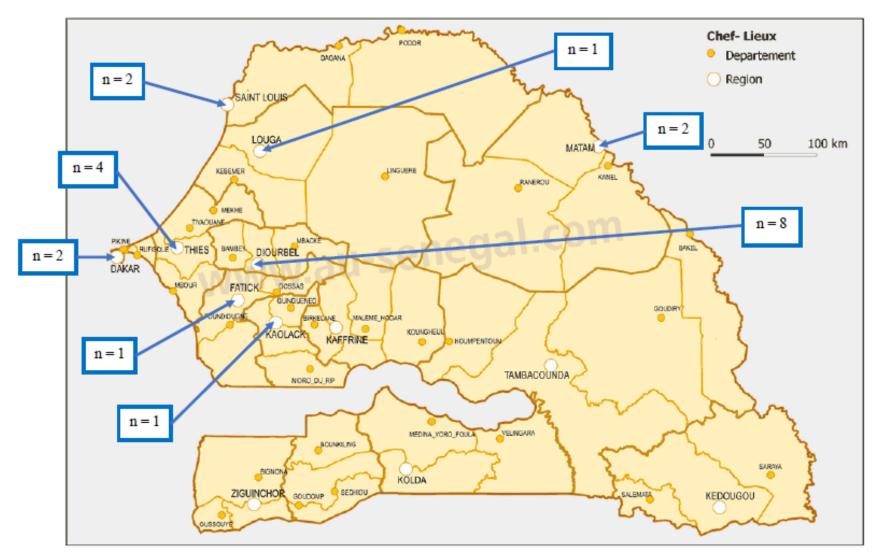
Douala, Cameroon, October 20

13th Regional Teaching Course


in Sub-Saharan Africa in cooperation with AFAN

Conflict of interest




Me struggling to understand ALS in Senegal...

Distribution of patients according to region

Past medical history and exposure

Les antécédents	Fréquence	Pourcentage
Antécédent familial de SLA/MMN	1	4,3%
Pesticides	11	47,8%
Engrais chimiques	12	52,2%
Alcool	2	8,7%
Tabac	4	17,4%
Traumatisme cranio-encéphalique	4	17,4%
Electrocution	3	13,0%
Rayon X	4	17,4%
Eau courante	21	91,3%
Eau puit	5	21,7%
Eau minérale	1	4,3%
Consanguinité parentale	2	8,7%

Univariate analysis of sociodemographic data

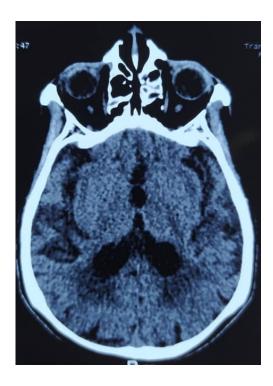
Out of Dakar	
Farmer	

Données sociodémographiques	Cas	Témoins	OR (IC = 95%)	P value
Age	44,3	48,3	-	0,84
Masculin	15	29	1,5 [0,6 - 4,2]	0,455
Féminin	8	24	0,6 [0,2 - 1,8]	0,455
Dakar ville	1	18	0,9 [0,01 - 0,7]	0,008
Banlieue de Dakar	1	20	0,07 [0,009 - 0,6]	0,002
Hors Dakar	21	15	26,6 [5,5 - 127,7]	<0,001
Agriculteur	8	2	13,6 [2,6 - 71]	0,001
Couturier	3	1	7,8 [0,8 - 79,5]	0,080
Sportif professionnel	1	1	2,4 [0,1 - 39,5]	0,51
Electricien	1	2	1,2 [0,1-13,5]	1,000
Professionnel du bâtiment	1	3	0,8 [0,07 - 7,7]	1,000
Ménagère	9	16	1,5 [0,5 - 4,1]	0,596
Etudiant	1	4	0,6 [0,06 - 5,2]	1,000
Employé d'administration	1	-	0,3 [0,2 - 0,4]	0,303
Marchand ambulant	1	2	1,2 [0,1 - 13,5]	1,000
Chauffeur	1	1	2,4 [0,1 - 39,5]	0,516
Sans emploi	2	2	2,4 [0,3 - 18,4]	0,582
Supérieur	3	4	1,8 [0,4 - 8,9]	0,43
Secondaire	1	15	0,1 [0,01 - 0,9]	0,03
Primaire	9	11	2,5 [0,8 - 7,1]	0,15
Non-scolarisé	10	22	1,1 [0,4 - 2,9]	1,00

Univariate analysis of past medical history and exposure

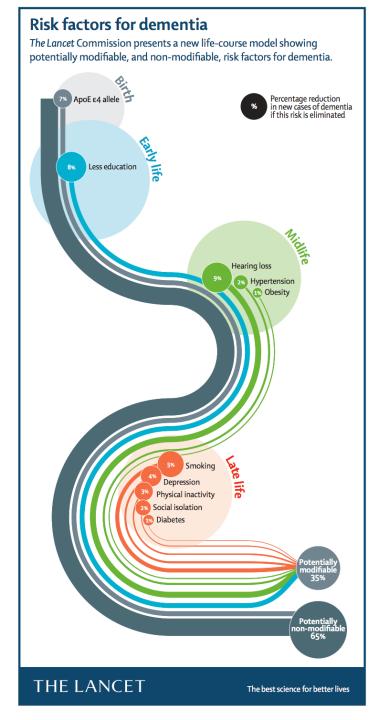
Antécédents	Cas	Témoins	OR (IC = 95%)	P value
Familial de SLA/Démence	1	-	0,3 [0,2 - 0,4]	0,3
Pesticides	11	3	15,3 [3,7 - 63,4]	<0,001
Engrais chimiques	12	9	5,2 [1,7 - 15,4]	0,004
Alcool	2	1	4,9 [0,4 - 57,6]	0,22
Tabac	4	б	1,6 [0,4 - 6,5]	0,48
Traumatisme cranio-encéphalique	4	8	1,2 [0,3 - 4,4]	1,00
Electrocution	3	6	1,1 [0,3 - 5,0]	1,00
Rayon X	4	10	0,9 [0,2 - 3,2]	1,00
Eau courante	21	46	1,6 [0,3 - 8,3]	0,71
Eau puit	5	4	3,4 [0,8 - 14,0]	0,12
Eau minérale	1	5	0,4 [0,05 - 3,9]	0,661
Consanguinité parentale	2	7	0,6 [0,1 - 3,2]	0,71

Environmental and nutritional risk factor of ALS


- β-Methylamino-L-alanine (BMAA) toxins: ALS-Parkinson-Dementia complex in the Western Pacific (Guam Island)
- Selenium: where people drink water containing a high concentration of selenium
- Metals: high manganese level, mercury-contaminated food, iron ???
- Pesticides: organochlorines, pyrethrins, herbicides and insecticides
- Electric shock and low frequency electromagnetic fields

Ingre. Clin Epidemiol, 2015 Ismail. J Neurol Neurosurg Psychiatry, 2013 Trojsi. Int J Mol Sci, 2013

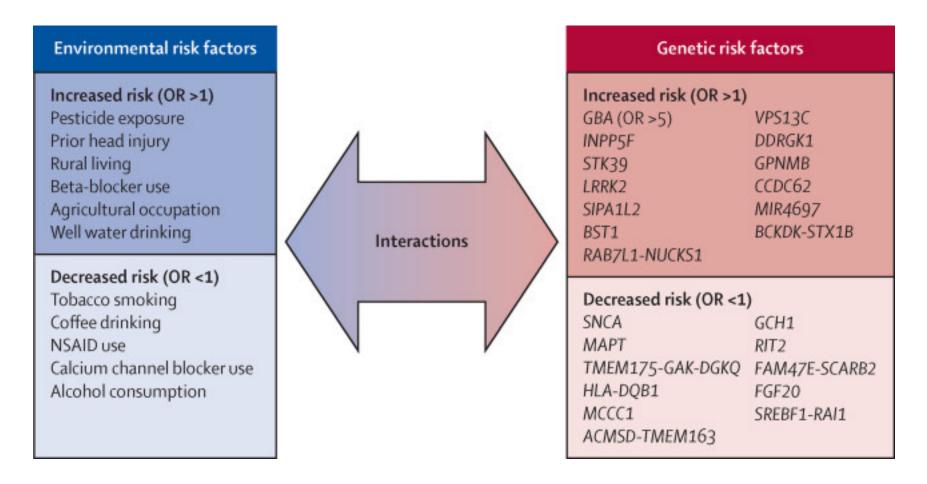
Dementia and heavy metals


- 50 million people (60% in developing countries) >>
 82 million (2030) >> 152 million (2050), WHO
- Alzheimer's disease: 1st cause of dementia (60 to 70%)
- USA: 476,000 new cases in 2016 (> 65): 1 person / 66 seconds
- In Africa: AD, 57.4 to 89.4% of dementias
- In Cameroon, very few data:

○ Dementia = 2nd reason for consultation in neurology among people ≥ 60 years old (*Kuaté et al., 2015*)

Dementia and heavy metals

- Early-life or mid-life lead exposure associated to cognitive decline
 - Neurotoxins crosses the BBB
- Cadmium, new neurotoxicants
 - Blood cadmium levels were significantly associated with AD-related mortality among older adults
- Neurotoxicity due to accumulation of manganese in brain
- Air pollution and increase incidence of dementia


Junk food

Parkinson's disease

- PD second most common neurodegenerative disorder after Alzheimer's disease
- Loss of dopaminergic neurons in the substantia nigra
 - Decrease of dopamine's level in the striatum
 - Leading to motor and non-motor symptoms
- Rare before 50 years and more frequent after 60 years
- Genetic and environmental risk factors
- Classic ttt L-Dopa, new therapeutic approach

PD risk factors

Kalia and Lang, The Lancet 2015

PD and pesticides

John Hopkins Medicine

PD and pesticides

- 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP): neurotoxin → oxidative stress, mitochondrial apoptosis, inflammation, excitotoxicity, and formation of inclusion bodies acting singly → dopaminergic neuronal damage in SNc and striatum
- Rotenone, DDT, 2,4-dichlorophenoxyacetic acid (2,4-D), dieldrin, diethyldithiocarbamate, paraquat, maneb, trifluralin, parathion, and imidazoldinethione, accelerate the formation of α-synuclein fibrils in vitro

In conclusion

Let's prevent what is preventable

WSD, October, 2018