

5th Congress of the European Academy of Neurology

Oslo, Norway, June 29 - July 2, 2019

Teaching Course 13

Nervous system disorders due to retroviruses (Level3)

Neurological disorders due to HTLV - an emerging issue in migrants to Europe

Francisco Javier Carod Artal Inverness, United Kingdom

Email: fjcarod-artal@hotmail.com

Diagnosis: TSP/HAM

• CSF:

- 22 lymphocytes,
- increased IgG index
- Non-exclusive OCBs

Serum:

- ELISA: HTLV-1 +
- Western blot on serum and CSF: HTLV-1 +

HTLV-1 infection in non-endemic areas Worldwide: • Groups at risk 10-20 million people infected Sex workers Prevalence in US blood Intravenous drug donors: 0.025% abusers: Spain, Italy, Ireland First-time blood donors Immigrants from in Europe: <0.4/10,000 endemic areas along Romania: endemic area: with their sexual 5.3/10,000 blood donors partners and children Seroprevalence Europe Transplant recipients among pregnant: 0.01and blood donors 0.1% Gessain, and Cassar; Frontiers Neurol, 2012

Implications for Public health in Europe

- Spain:
 - Nation-wide register: 351 HTLV-1 infected people
 - only 23% of new HTLV-1 diagnosis were symptomatic
 - Women 62%; native 12%
- Underdiagnosis must be common
- Screening in blood bank needed
- Screening on transplant donors needed
- Within European union, most HTLv-1 infections are detected in people with black ethnicity, coming from Caribbean and sub-Saharan region, and from Latin America
- Misdiagnosis of asymptomatic carriers leads to late diagnosis
- HIV/HTLV-1co-infection, 1.6%

De Mendoza, OFID, 2019

	Pathogenesis
A)	CD4+ T-cells infected by HTLV-1 migrate to CNS
	- CD8+ cytotoxic T cells lyse and kill infected Tax-expressing CD4+ target cells , HBZ and other viral antigens
	- TSP/HAM patients have high levels of CD8+ virus-specific CTLs in blood and CSF
	- High rate of lysis is linked wit lower proviral load
B)	Proliferation and clonal expansion of autoproliferative infected CD4+ cells
	Cross-reaction though molecular mimicry with host CNS antigens
C)	Bystander damage: IFN-y-secreting HTLV-1 infected CD4+ T cells are recognised by CD8+ CTLs and induce microglia to secrete toxic cytokines and TNF- alpha

Tagaya et al, F1000Research, 2019

	n	%
Paraparesis	42	100
Hiperreflexia /brisky reflexes	41	97.7
Babinski sign	40	95.2
Distal hipopalesthesia	33	78.6
Lower limb paresthesias	21	50
Neuropathic pain	16	38
Decreased visual accuracy	16	38.1
Lower limb proximal muscle wasting	12	28.6
Dysmetria	9	21.4
Fasciculations	8	19.5
Upper limb muscle wasting	5	11.9
Optic nerve atrophy	2	4.8
	Carod Arta	ıl, Neurologia 2008

	n	%
Urine incontinence	28	66.7
Back pain	24	57.1
 Chonic dermatitis /dry skin 	23	54.8
 Recurrent urine infections 	23	54.8
 Sjogren syndrome, dry eye/mouth 	19	45.2
Urine urgency	14	33.3
• Joint pain	13	30.9
Sexual dysfunction	12	28.6

Amyotrophic lateral sclerosis-like disease and HTLV-1 infection

- Rare condition
- Cases reported in Brazil
- Progressive course, around 10 years
- Muscle weakness and atrophy
- Bladder dysfunction and sensory symptoms
- Necropsy studies:
 - Gliosis of hypoglossal nucleus
 - Anterior horn cell loss

Other prognostic factors

Mortality HTLV-I

Linked to TSP/HAM

- Neumonia and other respiratory infections
- Urinary sepsis, pielonephritis
- Skin lesions / infections
- Denutrition , caquexia
- Respiratory insuficiency and fibrose
- HIV co-infection

Other causes

- Cancer
- Stroke

Co-infections

- HIV and HTLV-1 myelopathy
- Casseb, J Med Virol 2008: 38/296: 12.8%
- Carod-Artal, Neurología
 2008: 1/43: 2.4%
- Co-infected patients have higher proviral load
- Hepatitis B C
- Neuro-syphilis

Treatment						
TSP/HAM	ATTL					
 Limitation: Few randomized placebo- controlled clinical trials 	Chemotherapy					
 Antiviral therapy HTLV-1 reverse transcriptase inhibitors: zidovudine 	 Zidovudine and IFN-α 					
 Inmmunomodulation therapies Oral prednisolone IV methyl-prednisolone IFN-alpha, INF-beta Pentoxifylline Danazol Teriflunamide Histone deacetylase inhibitors: valproiz acid 	 Mogamulizumab Humanized anti- CCRS chemokine receptor monoclonal antibody Strong Ab-dependent cellular cytotoxicity 					
 Plasmapharesis IV Igs Anti-IL-2R monoclonal antibodies Symptomatic treatment Baclofen 	 Combination therapy: mogamulizumab + LSG15- based chemotherapy 					
• Gabapentin	Futsch, Viruses 2018					

Interpheron studies in TSP/HAM

IFN- alfa

INF beta

- Short-term benefit in 1 randomized study (n=48)
 - Different treatment modalities
 - Izumu, 1996: 3 MU/day 30 days
 Saito, 2004: 3 MU/day 14-21 days
- + 3 times / week Decrease in proviralload, CD8 + CD45RA-CD27 + T cells
- Studies with small casuistry
- Patients with different degrees of disability and time of evolution

Saito et al, 2004; Izumo et al, 1996

- Reduces the m-RNA load of Tax, which causes a reduction in the synthesis of viral proteins
- Reduces the frequency of specific CD8 + T cells
- Reduction of spontaneous lymphoproliferation invitro
- Unaltered proviral load
- No significant clinical progression was observed
- Safe and welltolerated
- n = 12; 60 ug im 2 x week

Unsong et al, Ann Neurol, 2005

Prevention A search for a vaccine Preventative strategies Neutralizing antibodies Blood donor screening: Japan, USA, France, Netherlands, Sweden, Portugal, Denmark, Greece, HTLV-1 envelope geninduce partial protection against Ireland, Romania, UK infection in rodents Transplant donor testing: France, UK HBZ may act as protective CTL antigen: tested in mouse model Sexual prevention: protected intercourse Routine antenatal screening and formula Clinial trials needed feeding of babies of HTLV-1 + mothers, An anti-HTLV-1 lentivirus vector-Nagasaki 1987 Strongyloides stercoralis screeningamong based vaccine carriers Encodes a polypeptide derived from Tax, HBZ, p12 and p30 Preventative therapy of asymptomatic HTLV-1 proteins carriers (valproate + antiviral drugs)? Screening among at-risk groups Safe Induced cellular response in mice Education: model "HTLV Aware" UK HAM-net (Japan) Global Network's HTLV-1 Task-Force

Conclusions

- Progressive lower limb weakness, spasticiy and neurogenic bladder are TSP/HAM hallmarks
- Lower extremity weakness and back pain are common initial complaints
- Urine urgency and incontinence may precede gait/walking symptoms
- Cerebellarsymptoms, cranial nerves and neuropathy are other features
- Think in TSP/HAM in patients migrating from endemic areas and groups atrisk